Citation: | GUI Yue, WU Cheng-kun, LIU Ying-shen, GAO Yu-feng, HE Jia. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. DOI: 10.11779/CJGE202002008 |
[1] |
WONG L S, HASHIM R, ALI F H. A review on hydraulic conductivity and compressibility of peat[J]. Journal of Applied Sciences, 2009, 9(18): 3207-3218. doi: 10.3923/jas.2009.3207.3218
|
[2] |
HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: general perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1988-1996.
|
[3] |
黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.
HUANG Chang-yong, XU Jian-ming. Soil Science[M]. Beijing: China Agriculture Press, 2010. (in Chinese)
|
[4] |
HOBBS N B. Mire morphology and the properties and behaviour of some British and foreign peats[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1986, 19(1): 7-80. doi: 10.1144/GSL.QJEG.1986.019.01.02
|
[5] |
MATTHIESN H. State of Preservation and Possible Settling of Cultural Layers below Bredsgarden and Bugaden Tenements[R]. Bryggen: Department of Conservation/National Museum of Denmark, 2004.
|
[6] |
YAMAGUCHI H, OHIRA Y, KOGURE K. Volume change characteristics of undisturbed fibrous peat[J]. Soils and Foundations, 1985, 25(2): 119-134. doi: 10.3208/sandf1972.25.2_119
|
[7] |
ZWANENBURG C. The influence of anisotropy on the consolidation behaviour of peat[D]. Delft: Delft University of Technology, 2005, 26(2): 229-250.
|
[8] |
桂跃, 付坚, 吴承坤. 高原湖相泥炭土渗透特性研究及机制分析[J]. 岩土力学, 2016, 37(11): 3197-3207. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611020.htm
GUI Yue, FU Jian, WU Cheng-kun, et al. Hydraulic conductivity of lacustrine peaty soil in plateau areas and its mechanism analysis[J]. Rock and Soil Mechanics, 2016, 37(11): 3197-3207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611020.htm
|
[9] |
MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 411-421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)
|
[10] |
SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 1-13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)
|
[11] |
PRICE J S, CAGAMPAN J, KELLNER E. Assessment of peat compressibility: is there an easy way?[J]. Hydrological Processes, 2010, 19(17): 3469-3475.
|
[12] |
ANDERSLAND O B, KHATTAK A S, AL-KHAFAJI A W N. Effect of organic material on soil shear strength[J]. Astm International, 1981, 740: 226-242.
|
[13] |
YAMAGUCHI H, OHIRA Y, KOGURE K, et al. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions[J]. Soils and Foundations, 1985, 25(3): 1-18. doi: 10.3208/sandf1972.25.3_1
|
[14] |
KELLY O. Compression and consolidation anisotropy of some soft soils[J]. Geotechnical and Geological Engineering, 2006, 24(6): 1715-1728. doi: 10.1007/s10706-005-5760-0
|
[15] |
MITCHELL J K, SANTAMARINA J C. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1222-1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
|
[16] |
O'KELLY B. Effect of decomposition on the compressibility of fibrous peat[J]. Geotechnical Special Publication, 2012, 8(4): 4329-4338.
|
[17] |
WARDWELL R E, CHARLIE W A, DOXTADER K A. Test method for determining the potential for decomposition in organic soils[J]. Astm Special Technical Publication, 1983(820): 218-229.
|
[18] |
PICHAN S, KELLY O. Stimulated decomposition in peat for engineering applications[J]. Ground Improvement, 2013, 166(GI3): 168-176.
|
[19] |
ROBERT D W. Performance of fill that contains organic matter[J]. Journal of Performance of Constructed Facilities, 1994, 8(4): 264-273. doi: 10.1061/(ASCE)0887-3828(1994)8:4(264)
|
[20] |
WARDWELL R E. Secondary Compression of Organic Soils with Fiber Degration[D]. Fort Collins: Colorado State University, 1980.
|
[21] |
WARDWELL R E, CHARLIE A W, DOXTADER K A. Test Method for Determining the Potential for Decomposition in Organic Soils[M]. New York: Testing of Peats and Organic Soils. ASTM International, 1981.
|
[22] |
BERRY P L. Application of consolidation theory for peat to the design of a reclamation scheme by preloading[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1983, 16(2): 103-112.
|
[23] |
HUANG P, PATEL M, SANTAGATA M C, et al. Classifcation of Organic Soils[R]. West Lafayette: Purdue University, 2009.
|
[24] |
KELLY O, BRENDAN C, PICHAN S P. Effects of decomposition on the compressibility of fibrous peat: a review[J]. Geomechanics and Geoengineering, 2013, 8(4): 286-296.
|
[25] |
BOOK A A. Standard classification of peat samples by laboratory testing (D4427-84)[J]. ASTM, Section, 1985, 4: 883-884.
|
[26] |
桂跃, 吴承坤, 赵振兴, 等. 微生物分解有机质作用对泥炭土工程性质的影响[J/OL]. 岩土力学, doi: 10.16285/j.rsm.2019.1122.
GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, et al. Effects of microbial decomposing organic matter on engineering properties of peaty soil[J/OL]. Rock and Soil Mechanics, doi: 10.16285/j.rsm.2019.1122. (in Chinese)
|
[27] |
KELLY O, BRENDAN C. Atterberg limits are not appropriate for peat soils[J]. Geotechnical Research, 2015, 2(3): 123-134.
|
[28] |
BOOTH J, DAHL A. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology, 1985, 6(3): 281-297.
|
[29] |
HUAT B B K, ASADI A, KAZEMIAN S. Experimental investigation on geomechanical properties of tropical organic soils and peat[J]. American Journal of Engineering & Applied Sciences, 2009, 2(1): 184-188.
|
[30] |
陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2010.
CHEN Huai-man. Environmental Soil Science[M]. Beijing: Science Press, 2010. (in Chinese)
|
[31] |
何稼, 楚剑, 刘汉龙. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
|
[32] |
MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 850-866.
|
[33] |
BURLAND J, CHAPMAN T, SKINNER H D, et al. ICE manual of geotechnical engineering[J]. Transport, 2012, 165(2): 79-79.
|
[34] |
FRANZEN L G. Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon?[J]. Mires and Peat, 2006(3): 1-16.
|
[35] |
DREXLER J Z, FONTAINE C S D, DEVEREL S J. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA[J]. Wetlands, 2009, 29(1): 372-386.
|
[1] | WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161 |
[2] | Experimental Study on Quick Detection of Moisture Content of Wide-Graded Gravel Soil Based on Microwave Humidity Method and Weighted Method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240308 |
[3] | WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028 |
[4] | LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287 |
[5] | JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019 |
[6] | LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021 |
[7] | WU Qi, CHEN Guo-xing, ZHOU Zheng-long, HUANG Bo. Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. DOI: 10.11779/CJGE201706009 |
[8] | YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026 |
[9] | WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022 |
[10] | WANG Yuan-zhan, LIU Xu-fei, ZHANG Zhi-kai, MA Dian-guang, CUI Yan-qiang. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1405-1410. DOI: 10.11779/CJGE201508007 |