• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zhong-ming, QIN Shuang-zhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003
Citation: JIANG Zhong-ming, QIN Shuang-zhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003

Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage

More Information
  • Received Date: May 20, 2019
  • Available Online: December 07, 2022
  • The accumulative damage effects in the surrounding rock of underground caverns for compressed air energy storage (CAES) are obvious in cyclic operation cases. In order to explore the cumulative damage characteristics of the surrounding rock of large-scale rock caverns, based on the damaged theory and FLAC3D software platform, a routine is developed for the cumulative damaged analysis of the large-scale CAES rock caverns under periodically loading and unloading conditions and validated by a given example. On this basis, the influences of cross-section type of caverns, buried depth and the minimum operating pressure on the cumulative damage characteristics of the surrounding rock are analyzed. The results show that: (1) The cross-section type of cavern, buried depth and the minimum operating pressure are the factors significantly influencing the deformation analysis parameters of the surrounding rock, and the damaged depth in vertical direction is greater than that in horizontal direction. (2) The damage degree of deformation parameters and damage variables of the surrounding rock in damage zone decrease with the increase of the buried depth or the minimum operating pressure. (3) For the cavern with the same cross-section, the difference of damage variables and deformation parameters at the same location in the damage zone of the surrounding rock increases with the numbers of cycles both in the conditions of different burial depths and minimum operation pressures. The accumulative damage characteristics of the surrounding rock of large-scale underground caverns can not be ignored for comprehensive analysis of safety and stability of underground caverns for CAES.
  • [1]
    张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm

    ZHANG Li-ying, YE Ting-lu, XIN Yao-zhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(25): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm
    [2]
    KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. doi: 10.1016/j.apenergy.2011.07.013
    [3]
    刘文岗, 王驹, 周宏伟, 等. 高放废物处置库花岗岩热-力耦合模拟研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2875-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm

    LIU Wen-gang, WANG Ju, ZHOU Hong-wei, et al. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2875-2883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm
    [4]
    XIA C C, ZHOU Y, ZHOU S W, et al. A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J]. Renewable Energy, 2015, 74: 718-726. doi: 10.1016/j.renene.2014.08.058
    [5]
    WEI C H, ZHU W C, YU Q L, et al. Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 75: 169-181.
    [6]
    XU X L, KARAKUS M. A coupled thermo-mechanical damage model for granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2018, 103: 195-204.
    [7]
    ZHOU S W, XIA C C, HU Y S, et al. Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77: 163-173.
    [8]
    ZHOU S W, XIA C C, ZHAO H B, et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica, 2017, 65(5): 1-14.
    [9]
    HUANG Z Y, WAGNER D, BATHIAS C, et al. Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel[J]. International Journal of Fatigue, 2011, 33(2): 115-121. doi: 10.1016/j.ijfatigue.2010.07.008
    [10]
    张平阳, 夏才初, 周舒威, 等. 循环加—卸载岩石本构模型研究[J]. 岩土力学, 2015, 36(12): 3354-3359. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm

    ZHANG Ping-yang, XIA Cai-chu, ZHOU Shu-wei, et al. A constitutive model for rock under cyclic loading and unloading[J]. Rock and Soil Mechanics, 2015, 36(12): 3354-3359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm
    [11]
    LI L C, WANG S Y, YU J. A coupled thermo-hydrologic- mechanical damage model and associated application in a stability analysis on a rock pillar[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 34(1): 38-53.
    [12]
    王唢, 赵明阶, 蒋树屏, 等. 隧道开挖中围岩损伤演化分析及力学参数预测[J]. 岩土力学, 2009, 30(增刊1): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm

    WANG Suo, ZHAO Ming-jie, JIANG Shu-ping, et al. Analysis of tunnel rock damage evolution process in excavation and predicting mechanical parameters[J]. Rock and Soil Mechanics, 2009, 30(S1): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm
    [13]
    张媛, 许江, 杨红伟, 等. 循环荷载作用下围压对砂岩滞回环演化规律的影响[J]. 岩石力学与工程学报, 2011, 30(2): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm

    ZHANG Yuan, XU Jiang, YANG Hong-wei, et al. Effect of confining pressure on evolution law of hysteresis loop of sandstone under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 320-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm
    [14]
    夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm

    XIA Cai-chu, ZHANG Ping-yang, ZHOU Shu-wei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm
    [15]
    尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm

    YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm
  • Cited by

    Periodical cited type(3)

    1. 朱艳. 邹城地区黏土体-结构面接触渗透下渗流侵蚀试验研究. 广东水利水电. 2024(08): 20-24 .
    2. 胡嘉英,邹光华,徐祚卉,陈学习,杨涛,师皓宇,周爱桃. 含瓦斯煤岩构造界面剪切-渗流耦合试验方法及教学设计实践. 实验技术与管理. 2024(09): 61-72 .
    3. 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性. 山东大学学报(工学版). 2023(03): 60-68 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return