• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Shao-heng, LIU Zhi-jun, XIA Tang-dai, ZHOU Hong-xing, YU Bing-qi. Experimental study on cumulative deformation characteristics of coral sand under long-term cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 161-164. DOI: 10.11779/CJGE2019S2041
Citation: HE Shao-heng, LIU Zhi-jun, XIA Tang-dai, ZHOU Hong-xing, YU Bing-qi. Experimental study on cumulative deformation characteristics of coral sand under long-term cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 161-164. DOI: 10.11779/CJGE2019S2041

Experimental study on cumulative deformation characteristics of coral sand under long-term cyclic loading

More Information
  • Received Date: April 27, 2019
  • Published Date: July 19, 2019
  • The drained triaxial shear tests on isotropic and K0 consolidation of coral sand samples taken from the South China Sea reveal that the consolidation path has a significant effect on the strength characteristics of the coral sand. On this basis, using the K0 consolidation condition, a series of long-term drained cycle triaxial tests with different confining pressures and cyclic dynamic stress ratios are carried out. The results show that the coral sand has a threshold cyclic dynamic stress ratio, which makes its particles obviously broken. The stability theory can be used to explain the cumulative deformation development patterns of the coral sand under long-term cyclic loading with different dynamic stress ratios. Based on the results of static and dynamic test results, the relative deviator stress level is introduced to establish an explicit model for the axial residual cumulative deformation of the coral sand, which can reflect the initial consolidation state and cyclic dynamic stress ratio of the coral sand under drained cyclic loading. The proposed model is of positive significance for predicting the long-term settlement of the coral sand foundation under cyclic loading.
  • [1]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019: 1-6.
    (WANG Gang, CHA Jing-jing, WEI Xing.Evolution of particle crushing of carbonate sand under cyclic triaxial stress path[J].Chinese Journal of Geotechnical, 2019: 1-6. (in Chinese))
    [2]
    HARDIN B O.Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [3]
    SADREKARIMI A, OLSON S M.Particle damage observed in ring shear tests on sands[J]. Canadian Geotechnical Journal, 2010, 47(5): 497-515.
    [4]
    王磊. 福建标准砂加筋硬化与循环累积变形三轴试验及本构模型[D]. 杭州: 浙江大学, 2014.
    (WANG Lei.Triaxial testing and constitutive modeling for fiber reinforcement and cyclic accumulative strain of Fujian sands[D]. Hangzhou: Zhejiang University, 2014. (in Chinese))
    [5]
    何绍衡, 郑晴晴, 夏唐代, 等. 考虑时间间歇效应的地铁列车荷载下海相软土长期动力特性试验研究[J]. 岩石力学与工程学报, 2019, 38(2): 353-364.
    (HE Shao-heng, ZHENG Qing-qing, XIA Tang-dai, et al.Experimental study on long-term dynamic characteristics of marine soft soils under metro train loads considering time intermittent effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 353-364. (in Chinese))
    [6]
    伍婷玉, 郭林, 蔡袁强, 等. 交通荷载应力路径下K0固结软黏土变形特性试验研究[J]. 岩土工程学报, 2017, 39(5): 859-867.
    (WU Ting-yu, GUO Lin, CAI Yuan-qiang, et al.Deformation behavior of K0-consolidated soft clay under traffic load-induced stress paths[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 859-867. (in Chinese))
    [7]
    姚兆明, 黄茂松. 循环荷载下饱和软黏土的累积变形显式模型[J]. 岩土工程学报, 2011, 33(3): 325-331.
    (YAO Zhao-ming, HUANG Mao-song.Explicit model for cumulative strain of saturated clay subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 325-331. (in Chinese))
  • Related Articles

    [1]HUANG Jianyou, YAN Yutao, DIAO Yu, ZHENG Gang, LI Kai, JIA Jianwei, LIU Yongchao. Horizontal deformation of piles controlled by capsule expansion technique[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 85-95. DOI: 10.11779/CJGE20230993
    [2]WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050
    [3]ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
    [4]ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya. Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. DOI: 10.11779/CJGE201412007
    [5]WANG Shu-guang. Deformation control of excavation engineering with complicated surroundings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 474-477.
    [6]LIU Huan-cun, LI Liang-jie, WANG Cheng-liang, WEI Hai-tao. Design and deformation control of excavation support project close to a subway station[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 654-658.
    [7]LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643.
    [8]LI Zhi-wei, HOU Wei-sheng, YE Ai-li, CHEN Ke-shuai, TANG Yong. Displacement control effect of passive zone improvement at excavation section of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 621-627.
    [9]SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao. Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 576-580.
    [10]GAO Meng, GAO Guangyun, FENG Shijin, YU Zhisong. Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 818-823.
  • Cited by

    Periodical cited type(24)

    1. 张锐,周豫,兰天,郑健龙,刘昭京,李彬. 高速铁路土工格栅加筋膨胀土边坡作用机制. 铁道科学与工程学报. 2024(01): 1-12 .
    2. 段君义,吴俊江,粟雨,吕志涛,林宇亮,杨果林. 浅层膨胀土及其纤维改良土的剪切强度特性. 浙江大学学报(工学版). 2024(03): 547-556+569 .
    3. 陈强,秦子鹏,蒋宁,周林真,陈增然,秦玉禹,李桃,彭杨. 降雨和水位变化条件下排涝河道岸坡稳定性的数值研究. 水资源与水工程学报. 2024(01): 186-196 .
    4. 张德辉,刘伟明,冯善周,郝献省. 膨胀土边坡失稳与防治研究. 科技创新与生产力. 2024(04): 134-136+140 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 李世明,胡卫军,韩琳琳. 锚杆支护形式对高陡公路边坡稳定性的影响研究. 西部交通科技. 2024(05): 34-37 .
    7. 王骜洵,蒋函静,许帅,徐永福. 降雨入渗下非饱和土边坡浅层破坏机制分析. 中南大学学报(自然科学版). 2024(07): 2701-2711 .
    8. 冀春杰,胡贺松,崔皓,简思敏,蒋明烨,韦童. 典型特殊土处理技术研究进展. 广州建筑. 2024(04): 105-108 .
    9. 韦秉旭,曾警,程聪,陈楚方,王起. 基于流固耦合的加筋膨胀土边坡稳定性分析. 公路. 2024(09): 8-15 .
    10. 时小波,崔广炎,牟超,温野,谢峰,付啸阳. 高寒区上覆岩石层膨胀土失稳边坡治理方法研究. 中外公路. 2024(05): 17-24+38 .
    11. 白玉霞,常顺,肖衡林,李丽华,何俊,邱季,周文卓,邓永锋. 膨胀土生态治理研究进展. 岩土工程学报. 2024(S2): 60-66+176 . 本站查看
    12. 赵二平,唐加林,李志坤,张聪. 不同初始含水率下广西膨胀土膨胀变形规律及劣化机理研究. 人民珠江. 2024(11): 115-123 .
    13. 陈敏. 机场滑坡与桩锚结构支护方案研究. 江西建材. 2024(12): 227-228+235 .
    14. 刘振北. 膨胀土滑坡基本特征分析及防治措施研究. 江西建材. 2023(02): 114-115+118 .
    15. 孙超. 粉煤灰掺量对膨胀土抗剪强度的改性影响. 水利建设与管理. 2023(05): 25-30 .
    16. 吴新华,闫林芳. 滑坡防治措施设计及运营效果评价. 江西建材. 2023(04): 130-132 .
    17. 欧阳荣,吴永东. 超高边坡防治方案设计及运营效果分析. 江西建材. 2023(07): 96-97+100 .
    18. 邱兵,白慧林. 锚杆挡墙加固高陡土质边坡设计探讨——以岗白路K8+290~K8+400段路基边坡为例. 科技和产业. 2023(21): 221-226 .
    19. 周钊. 弱膨胀土路基固坡防护施工研究. 交通世界. 2023(31): 52-54 .
    20. 曹正波,李建朋. 上硬下软型膨胀土路堑滑塌成因与处治. 公路. 2023(12): 39-43 .
    21. 李晶,梁力川,邵雪停,季军远,王玉. 考虑降雨和地震作用下的铁路边坡稳定性分析. 山东农业大学学报(自然科学版). 2023(06): 887-896 .
    22. 凌时光,张锐,兰天. 膨胀土强度特性的研究进展与探究. 长沙理工大学学报(自然科学版). 2023(06): 1-16 .
    23. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .
    24. 张梦涵,魏进,卞海丁. 基于机器学习的边坡稳定性分析方法——以国内618个边坡为例. 地球科学与环境学报. 2022(06): 1083-1095 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return