• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AN Liang, DENG Jin, GUO Peng, ZHANG Yang-peng, ZHENG Fang. Correlation between microscopic parameters and dynamic elastic modulus of loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 105-108. DOI: 10.11779/CJGE2019S2027
Citation: AN Liang, DENG Jin, GUO Peng, ZHANG Yang-peng, ZHENG Fang. Correlation between microscopic parameters and dynamic elastic modulus of loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 105-108. DOI: 10.11779/CJGE2019S2027

Correlation between microscopic parameters and dynamic elastic modulus of loess

More Information
  • Received Date: April 28, 2019
  • Published Date: July 19, 2019
  • The silty soil and silty clay samples of 2~12 m-deep soil layer of the Minxian Seismic Station and the Qingyang Loess Plateau are studied by the dynamic triaxial and scanning electron microscopy experiments, and the dynamic elastic modulus and microstructure characteristics are measured. The dynamic constitutive relation of silty clay is studied. The relationship between the vertical structure of the loess and the transverse (perpendicular to sedimentary direction) and the maximum dynamic elastic modulus are studied by the correlation analysis method. The results show that the dynamic constitutive relations of silt and silty clay are consistent with the Hardin-Dinevich hyperbolic model. The influences of fractal dimension, probability entropy and average shape coefficient on the maximum dynamic elastic modulus of silt and silty clay are the most sensitive. Secondly, for the average circumference, long axis and short axis, the average area has a relatively small impact on them. In view of the vertical and horizontal correlations of silt, the influences of transverse microscopic parameters on the maximum dynamic elastic modulus are more sensitive. For the silty clay, the influences of vertical microscopic parameters on the maximum dynamic elastic modulus are more sensitive.
  • [1]
    孙德安, 吴波. 非饱和粉土的动弹性模量和阻尼比研究[J]. 水利学报, 2012, 43(9): 1108-1113.
    (SUN De-an, WU Bo.Study on dynamic modulus and damping ratio of unsaturated silt[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1108-1113. (in Chinese))
    [2]
    王谦, 李娜, 王平, 等. 甘南地区黄土的动模量与阻尼比特性研究[J]. 岩土工程学报, 2017, 39(增刊1): 192-197.
    (WANG Qian, LI Na, WANG Ping, et al.Behaviors of dynamic modulus and damping ratio of loess in Gannan region of Gansu Province[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 192-197. (in Chinese))
    [3]
    李又云, 谢永利, 刘保健. 路基压实黄土动力特性的试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 1037-1046.
    (Experimental research on dynamic characteristics of roadbed compaction loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 1037-1046. (in Chinese))
    [4]
    安亮, 邓津, 王兰民. 黄土液化微细观特性试验研究[J]. 地震工程学报, 2018, 20(2): 1673-8047.
    (AN Liang, DENG Jin, WANG Lan-min.Experimental Investigation of Micro-mesoscopic Features of Loess Liquefaction[J]. China Earthquake Engineering Journal, 2018, 20(2): 1673-8047. (in Chinese))
    [5]
    王兰民, 邓津, 黄媛. 黄土震陷性的微观结构量化分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3025-3031.
    (WANG Lan-min, DENG Jin, HUANG Yuan.Quantitative analysis of microstructure of loess seismic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3025-3031. (in Chinese))
    [6]
    李识博, 王常明, 马建全, 等. 陇西黄土三轴剪切过程微观变化研究[J]. 岩土力学, 2013, 34(11): 3299-3305.
    (LI Shi-bo, WANG Chang-ming, MA Jian-quan, et al.Microscopic changes of Longxi loess during triaxial shear process[J]. Rock and Soil Mechanics, 2013, 34(11): 3299-3305. (in Chinese))
    [7]
    邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002.
    (DENG Ju-long.Gray theory basis[M]. Wuhan: Huazhong University of Science and Technology Press, 2002. (in Chinese))
    [8]
    陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007.
    (CHEN Guo-xing.Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese))
    [9]
    LIU C, SHI B, ZHOU J, et al.Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
  • Cited by

    Periodical cited type(7)

    1. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
    2. 段钊,董晨曦,郑文杰,马建全,李晓军. 砂质粉土冲击液化微观机理研究. 工程地质学报. 2022(04): 1087-1097 .
    3. 刘伟,孙欣然,何乃武. 强震区黄土结构演变与力学响应机制. 地球科学. 2022(12): 4442-4455 .
    4. 刘富强,钟秀梅,刘钊钊,梁收运,高烨,王申宁. 基于细观结构的原状黄土动弹性模量和阻尼比试验研究. 地震研究. 2021(01): 105-112 .
    5. 郑芳,邓津,安亮. 黄土微观参数指标与阻尼比关联度研究. 世界地震工程. 2021(03): 180-188 .
    6. PU Xiaowu,WANG Lanmin,WANG Ping,CHAI Shaofeng,XU Shiyang. Study of Shaking Table Test on Dynamic Response Characteristics and Failure Mechanism of the Loess Slope. Earthquake Research in China. 2020(01): 121-135 .
    7. 宋陈雨,霍继炜,高宇甲,刘江江,姜彤,吴琦,张俊然. 三门峡黄土结构性对土水特征曲线的影响. 中外公路. 2020(05): 245-248 .

    Other cited types(17)

Catalog

    Article views (292) PDF downloads (112) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return