• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015
Citation: DAI Bei-bing, YANG Jun, LIU Feng-tao, LIN Kai-rong. Macro- and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. DOI: 10.11779/CJGE2019S2015

Macro- and micro-properties and formation mechanisms of granular piles

More Information
  • Received Date: April 28, 2019
  • Published Date: July 19, 2019
  • A DEM study is carried out to simulate the construction of granular piles by considering various particle shapes. The underlying mechanisms are analyzed through the examination of the macro and micro-characteristics of granular piles. It is found that angle of repose decreases as particle shape evolves towards a regular pattern. Microscopically, the anisotropy magnitudes of contact orientation vectors, contact normal and tangential force vectors decrease as particle shape evolves from an irregular one to a regular one. The summation of the angle difference Δ?n between the principal anisotropy direction of contact orientation vectors and the vertical direction, with the angle of repose α, is almost a constant, and the angel differences Δ?f and Δ?t for the principal anisotropy directions of contact normal and tangential forces are revealed to be a linear function of angle of repose α. In addition, a relationship is also established between the direction where the most intense arching effect occurs and the principal anisotropy directions of contact orientation vectors, contact normal and tangential force vectors.
  • [1]
    MUEGGENBURG N W, JAEGER H M, NAGEL S R.Stress transmission through three-dimensional ordered granular arrays[J]. Phys Rev E, 2002, 66: 031304.
    [2]
    ATMAN A P F, BRUNET P, GENG J, et al. From the stress response function (back) to the sand pile “dip”[J]. Eur Phys J E, 2005, 13: 93-100.
    [3]
    GENG J, LONGHI E, BEHRINGER R P, et al.Memory in two-dimensional heap experiments[J]. Phys. Rev. E, 2001, 64: 060301.
    [4]
    ZUIGUEL L, MULLIN T, ROTTER J M.The effect of particle shape on the stress dip under a sandpile[J]. Phys. Rev. Lett., 2007, 98: 028001.
    [5]
    LUDING S.Stress distribution in static two-dimensional granular model media in the absence of friction[J]. Phys Rev E, 1997, 55: 4720-4729.
    [6]
    GOLDENBERG C, GOLDHIRSCH I.Friction enhances elasticity in granular solids[J]. Nature, 2005, 435: 188-191.
    [7]
    LIFFMAN K, NGUYEN M, METCALFE G, et al.Forces in piles of granular materials: an analytic and 3D DEM study[J]. Granul Matter, 2001, 3: 165-176.
    [8]
    LI Y, XU Y, THORNTON C.A comparison of discrete element method simulations and experiments for ‘sand pile’ composed of spherical particles[J]. Powder Technol, 2005, 160: 219-228.
    [9]
    DAI B B, YANG J, ZHOU C Y.Micromechanical origin of angle of repose in granular materials[J]. Granul Matter, 2017, 19: 24.
    [10]
    MATUTTIS H G, LUDING S, HERRMANN H J.Discrete element simulations of dense packing and heaps made of spherical and non-spherical particles[J]. Powder Technol., 2000, 109: 278-292.
    [11]
    ZHOU Z Y, ZOU R P, PINSON D, et al.Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles[J]. Granul Matter, 2014, 16: 695-709.
    [12]
    戴北冰, 杨峻, 周翠英. 松砂不稳定行为的数值模拟研究[J]. 岩土工程学报, 2013, 35(9): 1737-1745.
    (DAI Bei-bing, YANG Jun,ZHOU Cui-ying.Numerical study on instability behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1737-1745. (in Chinese))
    [13]
    DAI B B.Probing the boundary effect in granular piles[J]. Granul Matter, 2018, 20: 5.
  • Related Articles

    [1]YANG Chao, XUE Hai-bin, DANG Fa-ning, WANG hui. Mechanism and influence range of stress arching effect of CFRD in narrow valley regions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 214-218. DOI: 10.11779/CJGE2021S1039
    [2]XU Chao, ZHANG Xing-ya, HAN Jie, YANG Yang. Trapdoor model tests on impact of loading conditions on soil arching effect[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 726-732. DOI: 10.11779/CJGE201904016
    [3]GE Yun-feng, TANG Hui-ming, WANG Liang-qing, ZHAO Bin-bin, WU Yi-ping, XIONG Cheng-ren. Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 170-179. DOI: 10.11779/CJGE201601019
    [4]FANG Ying-guang, HOU Ming-xun, GU Ren-guo, CHEN Ping. Visual analysis of initiation of soil arching effect in piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1678-1684. DOI: 10.11779/CJGE201509016
    [5]ZHANG Qian, LI Shu-cai, ZHANG Qian-qing, LI Li-ping, XU Fei, YANG Shang-yang. Analysis on rock-arch effect of anti-slide piles and rational pile spacing in engineering project[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 180-185. DOI: 10.11779/CJGE2014S2030
    [6]FAN Li-bin, ZHANG Ding-wen, LIU Song-yu. Comparision of calculating methods for stress of soil arching effect of piled embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1155-1158.
    [7]RUI Rui, HUANG Cheng, XIA Yuan-you, HU Gang, XIA Xiao-long. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089.
    [8]WANG Mei, LI Jing-pei. New method for active earth pressure of rigid retaining walls considering arching effect[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 865-870.
    [9]LU De-chun, CAO Sheng-tao, DU Xiu-li, ZHANG Pei. Soil arching effect under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 454-458.
    [10]XIANG Xian-chao, ZHANG Hua, JIANG Guo-sheng, TU Peng-fei. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386.
  • Cited by

    Periodical cited type(7)

    1. 戴北冰,邓林杰,陈智刚. 颗粒摩擦对散粒堆积体拱效应的影响. 中山大学学报(自然科学版)(中英文). 2023(06): 89-97 .
    2. 戴北冰,李天齐,杨峻,刘锋涛. 组构对自然休止角影响的试验研究. 岩土力学. 2022(04): 957-968 .
    3. 周小文,许衍彬,赵仕威,陈昊,张昌辉. 偏心率对颗粒介质次生各向异性的影响. 华南理工大学学报(自然科学版). 2022(11): 141-154 .
    4. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    5. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看
    6. 朱遥,刘春,刘辉,黄靥欢,秦岩,邓尚. 颗粒形态对砂土抗剪强度影响的试验和离散元数值模拟. 工程地质学报. 2020(03): 490-499 .
    7. 谢勇. 巨厚堆积体陡壁基岩隧道洞口施工技术. 建材技术与应用. 2019(06): 33-35 .

    Other cited types(8)

Catalog

    Article views (277) PDF downloads (173) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return