• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Yu-feng, XU Chang-jie, YANG Feng, LUO Jing-jing, YANG Jun-sheng. Rock pressures of tunnels based on finite element upper bound analysis method with rigid moving elements[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2046-2052. DOI: 10.11779/CJGE201911009
Citation: SHI Yu-feng, XU Chang-jie, YANG Feng, LUO Jing-jing, YANG Jun-sheng. Rock pressures of tunnels based on finite element upper bound analysis method with rigid moving elements[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2046-2052. DOI: 10.11779/CJGE201911009

Rock pressures of tunnels based on finite element upper bound analysis method with rigid moving elements

More Information
  • Received Date: December 15, 2018
  • Published Date: November 24, 2019
  • According to the determination of the rock pressures and collapse mechanisms of tunnels, the finite element upper-bound method with rigid translatory moving elements (UBFEM-RTME) is used to obtain the upper bound solution charts of the supporting force coefficients Nγ and Nc as well as collapse mechanisms with active discontinuities and evolution laws. Compared with a wide variety of the upper bound rigid block method (UBRB) assuming collapse mechanisms and the simulation model tests, it is verified that the upper limit solution of the support force obtained by the UBFEM-RTME method is the optimal solution in the theoretical framework of the upper bound limit analysis. At the same time, the upper bound solutions of Nγ and Nc are consistent with the trend of the rock pressure solutions of the Terzaghi theory. In addition to the upper solutions of Nγ and Nc, the UBFEM-RTME method has many morphological features in the collapse mechanisms with active discontinuities, and basically covers different types of failure mechanisms in the existing literatures. It is shown that the UBFEM-RTME method can get rid of the limitation of the assumed collapse mechanisms and has great applicability and superiority for solving the rock pressures of the tunnels.
  • [1]
    谢家烋. 浅埋隧道的地层压力[J]. 土木工程学报, 1964(6): 60-72.
    (XIE Jia-xiao.Earth pressure on shallow burial tunnel[J]. China Civil Engineering Journal, 1964(6): 60-72. (in Chinese))
    [2]
    TERZAGHI K.Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943.
    [3]
    JTGD70—2004公路隧道设计规范[S]. 2004.
    (JTGD70—2004 Code for design of road tunnel[S]. 2004. (in Chinese))
    [4]
    ASSADI A, SLOAN S W.Undrained stability of a shallow square tunnel[J]. Journal of Geotechnical Engineering, 1991, 117(8): 1152-1173.
    [5]
    YANG F, YANG J S.Stability of shallow tunnel using rigid blocks and finite element upper bound solutions[J]. International Journal of Geomechanics, 2010, 10(6): 242-247.
    [6]
    WILSON D W, ABBO A J, SLOAN S W, et al.Undrained stability of rectangular tunnels where shear strength increases linearly with depth[J]. Canadian Geotechnical Journal, 2017, 54(4): 469-480.
    [7]
    杨峰, 阳军生, 张学民, 等. 黏土不排水条件下浅埋隧道稳定性上限有限元分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3952-3959.
    (YANG Feng, YANG Jun-sheng, ZHANG Xue-min, et al.Finite element analysis of upper bound solution of shallow-buried tunnel stability in undrained clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3952-3959. (in Chinese))
    [8]
    YAMAMOTO K, LYAMIN A V, WILSON D W, et al.Stability of a single tunnel in cohesive frictional soil subjected to surcharge loading[J]. Canadian Geotechnical Journal, 2011, 48: 1841-1854.
    [9]
    杨峰, 阳军生. 一种二阶锥线性化方法在上限有限元中的应用研究[J]. 岩土力学, 2013, 34(2): 593-599.
    (YANG Feng, YANG Jun-sheng.Investigation and application of a second-order cone linearizing method to finite element upper bound solution[J]. Rock and Soil Mechanics, 2013, 34(2): 593-599. (in Chinese))
    [10]
    赵明华, 彭珩, 张锐. 方形隧道稳定性极限分析有限元数值模拟[J]. 公路交通科技, 2015, 32(5): 107-114.
    (ZHAO Ming-hua, PENG Heng, ZHANG Rui.FEM numerical simulation for limit analysis of stability of square tunnel[J]. Journal of Highway and Transportation Research and Development, 2015, 32(5): 107-114. (in Chinese))
    [11]
    杨峰, 阳军生. 浅埋隧道围岩压力确定的极限分析方法[J]. 工程力学, 2008, 25(7): 179-184.
    (YANG Feng, YANG Jun-sheng.Limit analysis method for determination of earth pressure on shallow buried tunnel[J]. Engineering Mechanics, 2008, 25(7): 179-184. (in Chinese))
    [12]
    赵炼恒, 黄阜, 孙秋红, 等. 浅埋偏压矩形单洞隧道围岩压力极限上限分析方法[J]. 中南大学学报(自然科学版), 2014(9): 3093-3103.
    (ZHAO Lian-heng, HUANG Fu, SUN Qiu-hong, et al.Rock pressure of unsymmetrical shallow rectangular tunnel based on upper bound limit analysis method[J]. Jourmal of Central South University (Science and Technology Edition), 2014(9): 3093-3103. (in Chinese))
    [13]
    张标. 各种不利因素下浅埋隧道稳定性的上限分析[D]. 长沙: 中南大学, 2014.
    (ZHANG Biao.Upper bound analysis of stability of shallow tunnels for unfavorable conditions[D]. Changsha: Central South University, 2014. (in Chinese))
    [14]
    张佳华, 杨小礼, 张标, 等. 基于非线性破坏准则的浅埋偏压隧道稳定性分析[J]. 华南理工大学学报 (自然科学版), 2014, 42(8): 97-103.
    (ZHANG Jia-hua, YANG Xiao-li, ZHANG Biao, et al.Stability analysis of shallow bias tunnels based on nonlinear failure criterion[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(8) : 97-103. (in Chinese))
    [15]
    张翔, 李林安, 王世斌, 等. 考虑底部隆起的浅埋隧道围岩压力计算分析[J]. 应用数学和力学, 2017, 38(8): 911-921.
    (ZHANG Xiang, LI Lin-an, WANG Shi-bin, et al.Limit analysis of surrounding rock pressure for shallow tunnels considering floor heave[J]. Applied Mathematics and Mechanics, 2017, 38(8): 911-921. (in Chinese))
    [16]
    谢晓锋, 陶明, 吴秋红, 等. 非均质和各向异性土质浅埋隧道支护力研究[J]. 湖南大学学报(自科版), 2017, 44(7): 179-186.
    (XIE Xiao-feng, TAO Ming, WU Qiu-hong, et al.Supporting pressure of shallow tunnels in nonhomogeneous and anisotropic soils[J]. Journal of Hunan University (Natural Sciences), 2017, 44(7): 179-186. (in Chinese))
    [17]
    YANG F, ZHANG J, YANG J S, et al.Stability analysis of unlined elliptical tunnel using finite element upper-bound method with rigid translatory moving elements[J]. Tunnelling and Underground Space Technology, 2015, 50: 13-22.
    [18]
    杨峰, 赵炼恒, 张箭, 等. 基于刚体平动运动单元的上限有限元研究[J]. 岩土力学, 2014, 35(6): 1782-1808.
    (YANG Feng, ZHAO Lian-heng, ZHANG Jian, et al.Investigation of finite element upper bound solution based on rigid translatory moving element[J]. Rock and Soil Mechanics, 2014, 35(6): 1782-1786. (in Chinese))
    [19]
    孙雁军, 阳军生, 罗静静, 等. 隧道工作面稳定性与滑移线网破坏模式研究[J]. 岩土工程学报, 2019, 41(7): 1374-1380.
    (SUN Yan-jun, YANG Jun-sheng, LUO Jing-jing, et al.Investigation on the stability and mesh-like collapse mechanism of tunnel face[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1374-1380. (in Chinese))
    [20]
    CHEN J, YIN J H, LEE C F .Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming[J]. Canadian Geotechnical Journal, 2003, 40(4): 742-752.
    [21]
    周小文, 濮家骝, 包承纲. 隧洞拱冠砂土位移与破坏的离心模型试验研究[J]. 岩土力学, 1999, 20(2): 32-36.
    (ZHOU Xiao-wen, PU Jia-liu, BAO Cheng-gang.A study of the movement and failure characteristics of sand mass above the crown of a tunnel[J]. Rock and Soil Mechanics, 1999, 20(2): 32-36. (in Chinese))
    [22]
    程小虎. 密实砂土及硬黏土中圆形隧道的竖向支护压力[J]. 岩石力学与工程学报, 2014, 33(4): 857-864.
    (CHENG Xiao-hu.Earth pressure on circular tunnel in dense sand and hard clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 857-864. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 .
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 .
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 .
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 .
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 .
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 .
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 .
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 .
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 .
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 .
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 .
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 .
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 .
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 .
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 .
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 .
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 .
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 .
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 .
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 .
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 .

    Other cited types(43)

Catalog

    Article views (308) PDF downloads (144) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return