• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Cheng-jin, DANG Fa-ning, MIAO Zhe, CHEN Xin-zhou. Experimental study on grouting technology of rockfill and mechanical properties after grouting[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1907-1913. DOI: 10.11779/CJGE201910015
Citation: DENG Cheng-jin, DANG Fa-ning, MIAO Zhe, CHEN Xin-zhou. Experimental study on grouting technology of rockfill and mechanical properties after grouting[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1907-1913. DOI: 10.11779/CJGE201910015

Experimental study on grouting technology of rockfill and mechanical properties after grouting

More Information
  • Received Date: February 21, 2019
  • Published Date: October 24, 2019
  • The self-compacting mortar is used to carry out on-site grouting tests on sandstone rockfill materials to verify the controllability of the diffusion range of rockfill grouting and the feasibility of grouting technology. The tests show that the grouting reduces the porosity of the rockfill and has mortar cementing between the rockfill materials, which improves the mechanical properties of the rockfill materials, and the grouting construction technology is simple. The laboratory static triaxial tests are carried out to study the mechanical properties of rockfill, and they are compared before and after grouting owing to the characteristics of different grades of rockfill. The influences of confining pressure and fine particle content on the mechanical properties of grouted rockfill are studied. The strength parameters and deformation characteristics of different confining pressures and gradation characteristics are discussed. The experimental results show that the capability of the rockfill to resist deformation is greatly improved after grouting. And the higher the content of coarse particles, the more significant the skeleton effect. The relatively stable cementing structure can be formed after grouting, and the higher the strength parameters of rockfill, the better its resistance to deformation.
  • [1]
    凌华, 傅华, 韩华强. 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 12-16.
    (LING Hua, FU Hua, HAN Hua-qiang.Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J] Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 12-16. (in Chinese))
    [2]
    蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364.
    (CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al.Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese))
    [3]
    徐泽平, 邓刚. 高面板堆石坝的技术进展及超高面板堆石坝关键技术问题探讨[J]. 水利学报, 2018, 39(10): 1226-1234.
    (XU Ze-ping, DENG Gang.Development of high CFRD and key technologies for building super-high CFRD[J]. Journal of Hydraulic Engineering, 2018, 39(10): 1226-1234. (in Chinese))
    [4]
    徐泽平, 邓刚. 300 m级高混凝土面板堆石坝应力变形特性研究[C]// 高面板堆石坝安全性研究及软岩筑坝技术进展. 南京, 2014.
    (XU Ze-ping, DENG Gang.Study on stress and deformation characteristics of 300m high concrete face rockfill dam[C]// Safety Study of High Face Rockfill Dam and Progress of Soft Rock Dam Construction Technology. Nanjing, 2014. (in Chinese))
    [5]
    钮新强. 高面板堆石坝安全与思考[J]. 水力发电学报, 2017, 36(1): 104-111.
    (NIU Xin-qiang.Security of high concrete face rockfill dam consideration and conclusion[J]. Journal of Hydroelectric Engineering, 2017, 36(1): 104-111. (in Chinese))
    [6]
    蔡新, 杨杰, 郭兴文, 等. 胶凝砂砾石料弹塑性本构模型研究[J]. 岩土工程学报, 2016, 38(9): 1569-1577.
    (CAI Xin, YANG Jie, GUO Xing-wen, et al.Elastoplastic constitutive model for cement-sand-gravel material[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1569-1577. (in Chinese))
    [7]
    张凤德, 李秀文, 彭云枫, 等. 胶凝砂砾石坝防渗措施及应力分析[J]. 中国水利水电科学研究院学报, 2015, 13(3): 194-200.
    (ZHANG Fengde, LI Xiu-wen, PENG Yun-feng, et al.Analysis of stress and seepage control measures in the Cement sand gravel dam[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(3): 194-200. (in Chinese))
    [8]
    王志, 李龙, 王朝雅. 含裂隙类岩石注浆加固后破坏试验研究[J]. 中南大学学报(自然科学版), 2018, 49(4): 957-963.
    (WANG Zhi, LI Long, WANG Chao-ya.Experimental study on failure of cracked rock-like material after grouting reinforcement[J]. Journal of Central South University(Science and Technology), 2018, 49(4): 957-963. (in Chinese))
    [9]
    周茗如, 陈志超, 罗小博, 等. 湿陷性黄土中水泥浆液注浆加固机理[J]. 建筑科学与工程学报, 2017, 34(6): 65-70.
    (ZHOU Ming-ru, CHEN Zhi-chao, LUO Xiao-bo.Reinforcement mechanism of cement slurry grouting in collapsible loess[J]. Journal of Architecture and Civil Engineering, 2017, 34(6): 65-70. (in Chinese))
    [10]
    唐欣薇, 石建军, 张志恒, 等. 自密实堆石混凝土力学性能的细观仿真与试验研究[J]. 水利学报, 2008, 39(增刊2)., 2008, 39(S2). (in Chinese))
    [11]
    BENABED B, KADRI E H, AZZOUZ L, et al.Properties of self-compacting mortar made with various types of sand[J]. Cement & Concrete Composites, 2012, 34(10): 1167-1173.
    [12]
    刘杰, 谢定松. 我国土石坝渗流控制理论发展现状[J].岩土工程学报, 2011, 33(5): 714-718.
    (LIU Jie, XIE Ding-song.Development status of seepage control theory for earth-rock dams in China[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 714-718. (in Chinese))
    [13]
    刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011(增刊2): 148-154.
    (LIU En-long, CHEN Sheng-shui, LI Guo-yin.Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011(S2): 148-154. (in Chinese))
  • Related Articles

    [1]JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
    [2]LIANG Chuan-yang, WU Yue-dong, LIU Jian, WU Hui-guo. Influences of arrangement and cementation of soil particles on structure of artificial structural soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2135-2142. DOI: 10.11779/CJGE202211020
    [3]LI Tao, JIANG Ming-jing, SUN Ruo-han. DEM analysis of evolution law of bond degradation for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1159-1166. DOI: 10.11779/CJGE202006022
    [4]JIANG Ming-jing, SUN Ruo-han, LI Tao, LIU Jun. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 213-216. DOI: 10.11779/CJGE2019S1054
    [5]ZHU En-yang, LI Xiao-qiang, ZHU Jian-ming. Three-dimensional UH model for structured soils considering bonding[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2200-2207. DOI: 10.11779/CJGE201812006
    [6]JIANG Ming-jing, LI Tao, HU Hai-jun. Numerical simulation of biaxial tests on structured loess by distinct element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 241-246.
    [7]FENG Da-kuo, ZHANG Jian-min. Particle breakage of gravel-structure interface under cyclic shear[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 767-773.
    [8]JIANG Ming-jing, SUN Yu-gang. Two-dimensional numerical investigation on bonding effect between particles of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1246-1253.
    [9]WANG Lizhong, SHEN Kailun. Rotational hardening law of K0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863-872.
    [10]HUANG Xin, NING Jianguo, GUO Ye, ZHU Baolin. Effect of cement content on the structural formation of stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 436-441.

Catalog

    Article views (258) PDF downloads (142) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return