• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin-yu, ZHANG Xian-wei, KONG Ling-wei, XU Chao. Structural damage and dynamic failure mechanism of granite residual soils under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011
Citation: LIU Xin-yu, ZHANG Xian-wei, KONG Ling-wei, XU Chao. Structural damage and dynamic failure mechanism of granite residual soils under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881. DOI: 10.11779/CJGE201910011

Structural damage and dynamic failure mechanism of granite residual soils under impact loading

More Information
  • Received Date: November 06, 2018
  • Published Date: October 24, 2019
  • A series of impact tests with various frequencies and amplitudes are performed to study the influences of impact loading on the mechanical behaviors of granite residual soils, particularly for the development of deformation and excess pore water pressure. Similar critical values for amplitude and frequency are observed. Once the amplitude and frequency exceed their critical values, the soil is damaged severely and its strength decreases. Under the impact loading with low frequency or ultra-high frequency, higher pore water pressure is generated, resulting in a decrease of the effective stress and strength. Three quantitative parameters of the morphological features of the hysteresis curve are proposed to evaluate the dynamic damage of granite residual soils. Furthermore, three modes of impact damage and their characteristics are suggested. The structural damage caused by impact energy dissipation and accumulation of plastic deformation is proved to be the dominant cause of soil failure. The influence degree of impact loading on the granite residual soils depends on the natural structure strength and the amount of micro-cracks of the soil, as well as the propagation of cracks and plasticity strain induced by impact loading. Based on test results, it is suggested that the critical value for amplitude and frequency of the soils be ascertained before construction and impact loading with high-amplitude and low or ultra-high frequency be avoided. This study can enhance the understanding of the mechanical response of soils under impact loading and provide technical guidance for construction.
  • [1]
    ZHANG X W, KONG L W, LI J J.Influence of dry and wet seasons on disintegration characteristics of basalt residual soil from the Leizhou Peninsula, China[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2018, 51(4): 1-11.
    [2]
    尹松, 孔令伟, 张先伟, 等. 基于自钻式旁压仪的残积土原位力学特性试验研究[J]. 岩土工程学报, 2016, 38(4): 688-695.
    (YIN Song, KONG Ling-wei, ZHANG Xian-wei, et al.Experimental study on the in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. (in Chinese))
    [3]
    周小文, 刘攀, 胡黎明, 等. 结构性花岗岩残积土的剪切屈服特性试验研究[J]. 岩土力学, 2015, 36(增刊2): 157-163.
    (ZHOU Xiao-wen, LIU Pan, HU Li-ming, et al.An experimental study of shear yield characteristics of structured granite residual soil[J]. Rock and Soil Mechanics, 2015, 36(S2): 157-163. (in Chinese))
    [4]
    尹松, 孔令伟, 杨爱武, 等. 花岗岩残积土填料路用工程特性室内试验研究[J]. 岩土力学, 2016, 37(增刊2): 287-293.
    (YIN Song, KONG Ling-wei, YANG Ai-wu, et al.Indoor experimental study of road performance of granite residual soil for subgrade filling materials[J]. Rock and Soil Mechanics 2016, 37(S2): 287-293. (in Chinese))
    [5]
    胡华, 梁建业, 蔡亮, 等. 含水率对花岗岩残积土动态流变损伤力学特性与损伤度影响试验研究[J]. 水利学报, 2015, 46(增刊1): 54-58.
    (HU Hua, LIANG Jian-ye, CAI Liang, et al.Experiment and research on dynamic rheological damage mechanics characteristics and damage degree influence with different moisture content of granite residual soil[J]. Journal of Hydraulic Engineering, 2016, 46(S1): 54-58. (in Chinese))
    [6]
    张先伟, 刘新宇, 孔令伟, 等. 爆破冲击荷载下花岗岩残积土的力学响应试验研究[J]. 中国科学:技术科学, 2019, 49(6): 690-702.
    (ZHANG Xian-wei, LIU Xin-yu, KONG Ling-wei, et al.Experimental study on mechanical characteristics of granite residual soil under blast loading[J]. Scientia Sinica Technologica, 2019, 49(6): 690-702. (in Chinese))
    [7]
    胡华, 蔡亮, 梁健业, 等. 花岗岩残积土冲击损伤与损伤演化特性试验研究[J]. 岩土力学, 2015, 36(增刊1): 25-30.
    (HU Hua, CAI Liang, LIANG Jian-ye, et al.Experimental research on impact damage and damage evolution characteristics of granite saprolite[J]. Rock and soil mechanics, 2015, 36(S1): 25-30. (in Chinese))
    [8]
    WOMAC A R, TOMPKINS F D, DRUMM E C, et al.Measuring dynamic response of soil subjected to impact loading[J]. Soil and Tillage Research, 1989, 14(1): 25-38.
    [9]
    GUPTA C P, VISVANATHAN, et al. Dynamic behavior of saturated soil under impact loading[J]. Transactions of the American Society of Agricultural Engineers, 1993, 36(4): 1001-1007.
    [10]
    XUE X H, REN T H, ZHANG W H.Analysis of fatigue damage character of soils under impact load[J]. Journal of Vibration and Control, 2013, 19(11): 1728-1737.
    [11]
    ZHANG DAN, ZHU Z W, LIU Z J, et al.Dynamic mechanical behavior and numerical simulation of frozen soil under impact loading[J]. Shock and Vibration, 2016(6): 1-16.
    [12]
    DARYAEI R, ESLAMI A.Settlement evaluation of explosive compaction in saturated sands[J]. Soil Dynamics and Earthquake Engineering, 2017(97): 241-250.
    [13]
    HANSBO S.Dynamic consolidation of soil by a falling weight[J]. Ground Engineering, 1978, 11(5): 27-30.
    [14]
    FENG S, TAN K, SHUI W, et al.Densification of desert sands by high energy dynamic compaction[J]. Engineering Geology, 2013, 157(8): 48-54.
    [15]
    焦贵德, 赵淑萍, 马巍, 等. 循环荷载下高温冻土的变形和强度特性[J]. 岩土工程学报, 2013, 35(8): 1553-1558.
    (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al.Deformation and strength of warm frozen soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1553-1558. (in Chinese))
    [16]
    聂庆科, 李佩佩, 王英辉, 等. 三轴冲击荷载作用下红黏土的力学性状[J]. 岩石力学与工程学报, 2009, 28(6): 1220-1225.
    (NIE Qing-ke, LI Pei-pei, WANG Ying-hui, et al.Mechanical characteristics of red clay under triaxial impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1220-1225. (in Chinese))
    [17]
    林伟弟, 李彰明, 罗智斌. 三轴冲击荷载作用下淤泥力学响应研究[J]. 岩土力学, 2015, 36(7): 1966-1972.
    (LING Wei-di, LI Zhang-ming, LUO Zhi-bin.Mechanical responses of muck under triaxial impact loading[J]. Rock and Soil Mechanics, 2015, 36(7): 1966-1972. (in Chinese))
    [18]
    ASTM standard D2487. Standard practice for classification of soils for engineering purposes[S]. 2006.
    [19]
    ZHANG X W, KONG L W, YIN SONG, et al.Engineering geology of basaltic residual soil in Leiqiong, southern China[J]. Engineering Geology, 2017, 220: 196-207.
    [20]
    MAYNE P W, JONES J S.Impact stresses during dynamic compaction[J]. American Society of Civil Engineers, 1983, 109(10): 1342-1346.
    [21]
    ASTM standard D5311M-13. Standard test methods for load controlled cyclic triaxial strength of soil[S]. 2013.
    [22]
    HENKEL D J, GILBERT G D.The effect measured of the rubber membrane on the triaxial compression strength of clay samples[J]. Géotechnique, 1952, 3(1): 20-29.
    [23]
    席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2): 182-187.
    (XI Dao-ying, LIU Xiao-yan, ZHANG Cheng-yuan.Analysis of micro and mesodamage of rock by macro-hysteresis curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. (in Chinese))
    [24]
    KONG W K.Blasting assessment of slopes and risks planning[J]. Australian Journal of Civil Engineering, 2012, 10(2): 177-191.
    [25]
    张志呈. 浅谈评价爆破地震效应的方法和标准[J]. 爆破器材, 1998, 27(3): 32-35.
    (ZHANG Zhi-cheng.Primary discussion to the methods and criteria of evaluating blasting ground vibration effects[J]. Explosive Materials, 1998, 27(3): 32-35. (in Chinese))
    [26]
    MORTEZAIE A R, VUCETIC MLADEN.Effect of frequency and vertical stress on cyclic degradation and pore water pressure in clay in the NGI simple shear device[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1727-1737.
    [27]
    LEI H Y, LI BIN, LU H B, et al.Dynamic deformation behavior and cyclic degradation of ultrasoft soil under cyclic loading[J]. American Society of Civil Engineers, 2016, 28(11): 1-10.
    [28]
    焦贵德, 赵淑萍, 马巍, 等. 循环荷载下冻土的滞回圈演化规律[J]. 岩土工程学报, 2013, 35(7): 1343-1349.
    (JIAO Gui-de, ZHAO Shu-ping, MA Wei, et al.Evolution laws of hysteresis loops of frozen soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1343-1349. (in Chinese))
    [29]
    葛修润, 蒋宇, 卢允德, 等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报, 2003, 22(10): 1581-1585.
    (GE Xiu-run, JIANG Yu, LU Yun-de, et al.Testing study on fatigue deformation law of rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1581-1585. (in Chinese))
  • Cited by

    Periodical cited type(12)

    1. 尹松,刘鹏飞,孙玉周,李新明,闫盼,王志留. 列车荷载作用下压实花岗岩残积土累积变形特性试验研究. 振动与冲击. 2024(04): 87-95 .
    2. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 .
    3. 舒荣军,孔令伟,周振华,简涛,李甜果. 卸荷-增孔压条件下花岗岩残积土的力学特性. 岩土力学. 2023(02): 473-482 .
    4. 刘飞禹,梁崇旭,王军,刘洪波. 不同含水率下花岗岩残积土循环剪切特性研究. 岩石力学与工程学报. 2023(08): 2048-2057 .
    5. 刘飞禹,梁崇旭,王军,刘洪波. 含水率和法向循环荷载对残积土剪切特性的影响. 中国公路学报. 2023(08): 172-180 .
    6. 张强,刘一奥. 非饱和花岗岩残积土的弹塑性本构模型与验证. 吉林大学学报(理学版). 2023(06): 1457-1462 .
    7. 江圣泽,陈惊宇,武翔云,于丽波. 西部某机场刚性道面动态弹性模量变化规律. 交通科技与经济. 2022(03): 57-62 .
    8. 舒荣军,孔令伟,黎澄生,刘炳恒,简涛. 考虑先期卸荷静偏应力的花岗岩残积土动力特性研究. 振动与冲击. 2022(17): 93-100 .
    9. 舒荣军,孔令伟,王俊涛,简涛,周振华. 考虑先期卸荷影响的花岗岩残积土湿化特性试验研究. 岩土工程学报. 2022(S1): 154-159+165 . 本站查看
    10. 周宏. 广州地区花岗岩残积土长期累积变形特性研究. 地下空间与工程学报. 2022(S2): 627-633+668 .
    11. 戴兵,单启伟,罗鑫尧,薛永明. 含孔洞岩石在静应力下的循环冲击试验研究. 黄金科学技术. 2020(04): 531-540 .
    12. 安然,孔令伟,柏巍,黎澄生. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应. 岩石力学与工程学报. 2020(S1): 3159-3167 .

    Other cited types(3)

Catalog

    Article views (332) PDF downloads (224) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return