• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, YU Shu-yang, ZHONG Ling-wei, ZHANG Ke. Fracture characteristics of Brazilian disc with fully internal cracks based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1636-1644. DOI: 10.11779/CJGE201909007
Citation: WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, YU Shu-yang, ZHONG Ling-wei, ZHANG Ke. Fracture characteristics of Brazilian disc with fully internal cracks based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1636-1644. DOI: 10.11779/CJGE201909007

Fracture characteristics of Brazilian disc with fully internal cracks based on 3D-ILC

More Information
  • Received Date: May 20, 2018
  • Published Date: September 24, 2019
  • The fully internal crack is created in the Brazilian disc based on the 3D-ILC method, without any effect on the surface. The uniaxial compression experiments are performed on the Brazilian discs with internal cracks at different angles. The experimental results are compared with the existing literatures. The propagation of the fully internal crack, the distribution of the stress-induced birefringence, the initiation of the crack and the failure stress and the fracture surface characteristics are investigated. Then the numerical simulations are carried out. The results show that: (1) The validity of the 3D-ILC is proved in the fracture mechanics researches. (2) The stress birefringence of the cracked specimen is discontinuous at the internal crack. (3) Compared to the intact specimens, the internal cracks greatly reduce the strength of the Brazilian disc, with decrease of 10.7%, 60.6% and 89.2% for the specimens with 30°, 60° and 90°. The stresses of crack initiation are 100%, 11.7% and 15.6% of the failure stress for the specimens with 30°, 60° and 90°. (4) The internal crack is penetrated by the primary crack for the Brazilian disc with crack of 30°. The mode I-II 3D wing cracks occur at the crack tip, while the mode III cracks occur at the sides of discs with internal crack of 60°. The primary crack is mode I crack for the disc with internal crack of 90°. (5) Numerical simulations are carried out on the Brazilian discs. The results may provide experimental support for the corresponding theoretical researches.
  • [1]
    GRIFFITH A A.The phenomena of rupture and flow in solids[J]. Philtransrsoca, 1921, 221(2): 163-198.
    [2]
    李夕兵, 罗琳, 黎崇金. 考虑岩石交界面方向效应的巴西劈裂试验研究[J]. 工程科学学报, 2017, 39(9): 1295-1304.
    (LI Xi-bing, LUO Lin, LI Chong-jin.Experimental study of Brazilian splitting considering the directional effect of rock interface[J]. Journal of Engineering Science, 2017, 39(9): 1295-1304. (in Chinese))
    [3]
    HONDROS G.The evaluation of Poisson's ratio and modulus of materials of a low tensile resistence by the Brazilian (indirect tensile) test with particular reference to concrete[J]. Aust J Appl Sc, 1959, 112(6): 68-71.
    [4]
    FOWELL R J.Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 2007, 32(7): 57-64.
    [5]
    TANG Tianxi, BAŽANT ZDENEK P, YANG Sungchul, et al. Variable-notch one-size test method for fracture energy and process zone length[J]. Engineering Fracture Mechanics, 1996, 55(3): 383-404.
    [6]
    张盛, 王启智. 用5种圆盘试样的劈裂试验确定岩石断裂韧度[J]. 岩土力学, 2009, 30(1): 12-18.
    (ZHANG Sheng, WANG Qi-zhi.Fracture toughness of rock was determined by splitting test of 5 kinds of disc specimens[J]. Rock and Soil Mechanics, 2009, 30(1): 12-18. (in Chinese))
    [7]
    陈枫, 孙宗颀, 徐纪成. 单轴压缩下中心裂纹巴西试样的权函数分析[J]. 岩石力学与工程学报, 2000, 19(5): 599-603.
    (CHEN Feng, SUN Zong-qi, XU Ji-cheng.Weight function analysis of Brazilian specimens with central crack under uniaxial compression[J]. Journal of Rock Mechanics and Engineering, 2000, 19(5): 599-603. (in Chinese))
    [8]
    李念斌, 董世明, 华文. 裂纹面接触对中心裂纹圆盘应力强度因子影响分析[J]. 岩土力学, 2017, 38(8): 2395-2401.
    (LI Nian-bin, DONG Shi-ming, HUA Wen.Analysis of the effect of crack surface contact on the stress intensity factor of the central crack disc[J]. Rock and Soil Mechanics, 2017, 38(8): 2395-2401. (in Chinese))
    [9]
    崔智丽, 宫能平, 经来旺. 岩石非理想裂纹圆盘试样动态断裂韧性测试的有限元分析及试验研究[J]. 岩土力学, 2015, 36(3).(CUI Zhi-li, GONG Neng-ping, JING Lai-wang. Finite element analysis and experimental study on dynamic fracture toughness test of non-ideal cracked disk specimen of rock[J]. Rock and Soil Mechanics, 2015, 36(3). (in Chinese))
    [10]
    戴峰, 魏明东, 徐奴文. 人字形切槽巴西圆盘Ⅰ型渐进断裂数值模拟研究[J]. 岩石力学与工程学报, 2015(增刊2): 3906-3914.
    (DAI Feng, WEI Ming-dong, XU Nu-wen.Numerical simulation of type I progressive fracture of Brazilian disk with herringbone groove[J]. Journal of Rock Mechanics and Engineering, 2015(S2): 3906-3914. (in Chinese))
    [11]
    许媛, 戴峰, 徐奴文. 人字形切槽巴西圆盘岩石试样复合型断裂渐进过程数值模拟研究[J]. 岩土工程学报, 2015, 37(12): 2189-2197.
    (XU Yuan, DAI Feng, XU Nu-wen.Numerical simulation of mixed-mode fracture evolution of Brazilian disc rock specimen with herringbone groove[J]. Journal of Geotechnical Engineering, 2015, 37(12): 2189-2197. (in Chinese))
    [12]
    李术才, 杨磊, 李明田. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报, 2009, 28(2): 281-289.
    (LI Shu-cai, YANG Lei, LI Ming-tian, et al.Effect of three-dimensional built-in fracture dip angle on tensile mechanical properties and fracture characteristics of rock-like materials[J]. Journal of Rock Mechanics and Engineering, 2009, 28(2): 281-289. (in Chinese))
    [13]
    付金伟, 朱维申, 雒祥宇. 含三维内置断裂面新型材料断裂体破裂过程研究[J]. 中南大学学报(自然科学版), 2014(9): 3257-3263.
    (FU Jin-wei, ZHU Wei-shen, LUO Xiang-yu.Study on fracture process of a new material fracture body with 3-D built-in fracture plane[J]. Journal of Central South University (Natural Science Edition), 2014(9): 3257-3263. (in Chinese))
    [14]
    李世愚. 岩石断裂力学导论[M]. 北京: 中国科学技术大学出版社, 2010.
    (LI Shi-yu.Introduction to rock fracture mechanics[M]. Beijing: China University of Science and Technology Press, 2010. (in Chinese))
    [15]
    李廷春, 吕海波, 王辉. 单轴压缩载荷作用下双裂隙扩展的CT扫描试验[J]. 岩土力学, 2010, 31(1): 9-14.
    (LI Ting-chun, LÜ Hai-bo, WANG Hui.CT scanning test of double crack propagation under uniaxial compression[J]. Rock and Soil Mechanics, 2010, 31(1): 9-14. (in Chinese))
    [16]
    王萍. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学, 2015, 36(3): 687-693.
    (WANG Ping.Study on hydration damage evolution of brittle-hard shale based on NMR[J]. Rock and Soil Mechanics, 2015, 36(3): 687-693. (in Chinese))
    [17]
    陈厚群, 丁卫华, 蒲毅彬. 单轴压缩条件下混凝土细观破裂过程的X射线CT实时观测[J]. 水利学报, 2006, 37(9): 1044-1050.
    (CHEN Hou-qun, DING Wei-hua, PU Yi-bin.Real-time X-ray CT observation of mesoscopic fracture process of concrete under uniaxial compression[J]. Journal of Water Conservancy, 2006, 37(9): 1044-1050. (in Chinese))
    [18]
    李浩然, 杨春和, 刘玉刚, 等. 单轴荷载作用下盐岩声波与声发射特征试验研究[J]. 岩石力学与工程学报, 2014, 33(10): 2107-2116.
    (LI Hao-ran, YANG Chun-he, LIU Yu-gang, et al.Experimental study on acoustic and acoustic emission characteristics of salt rock under uniaxial loading[J]. Journal of Rock Mechanics and Engineering, 2014, 33(10): 2107-2116. (in Chinese))
    [19]
    王海军, 张九丹, 任然, 等. 基于电磁场-介质损伤的三维深埋裂纹3D-ILC实现[J]. 岩土工程学报, 待刊. (WANG Hai-jun, ZHANG Jiu-dan, REN Ran, et al. Embedded crcaks in materials induced by 3D-ILC[J]. Chinese Journal of Geotchnical Engineering, in press.
    [20]
    王海军, 郁舒阳, 任然, 等. 基于3D-ILC含三维内裂纹孔口脆性固体断裂特性试验[J]. 岩土力学, 2019, 40(6): 2200-2212.
    (WANG Hai-jun, YU Shu-yang, REN Ran, et al.Based on the test of brittle solid fracture characteristics of 3D-ILC with 3-D internal crack orifice[J]. Rock and Soil Mechanics, 2019, 40(6): 2200-2212. (in Chinese))
    [21]
    ROESLER F C.Brittle fracture near equilibrium[J]. Proceedings of the Physical Society, 2002, 69(10): 981-992.
    [22]
    KNAUSS W G.An observation of crack propagation in anti-plane shear[J]. International Journal of Fracture Mechanics, 1970, 6(2): 183-187.
    [23]
    SOMMER E.Formation of fracture ‘lances' in glass[J]. Engineering Fracture Mechanics, 1969, 1(3): 539.
    [24]
    雷振坤. 结构分析数字光测力学[M]. 大连: 大连理工大学出版社, 2012.
    (LEI Zhen-kun.Digital photometric mechanics for structural analysis[M]. Dalian: Dalian University of Technology Press, 2012. (in Chinese))
    [25]
    DYSKIN A V, JEWELL R J, JOER H, et al.Experiments on 3-D crack growth in uniaxial compression[J]. International Journal of Fracture, 1994, 65(4): R77-R83.
    [26]
    BANKS-SILLS LESLIE, WAWRZYNEK PAUL A, CARTER BRUCE, et al.Methods for calculating stress intensity factors in anisotropic materials: Part II Arbitrary geometry[J]. Engineering Fracture Mechanics, 2007, 74(8): 1293-1307.
    [27]
    孙欣, 朱哲明, 谢凌志, 等. 基于SENDB试样的砂岩复合脆性断裂行为研究[J]. 岩石力学与工程学报, 2017, 36(12): 2884-2894.
    (SUN Xin, ZHU Zhi-ming, XIE Ling-zhi, et al.Study on composite brittle fracture behavior of sandstone based on SENDB specimen[J]. Journal of Rock Mechanics and Engineering, 2017, 36(12): 2884-2894. (in Chinese))
    [28]
    LI F Z, SHIH C F, NEEDLEMAN A.A comparison of methods for calculating energy release rates[J]. Engfractmech, 1985, 21(2): 405-421.
  • Related Articles

    [1]Seepage-stress-cracking analysis of concrete lining under high internal pressure[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240664
    [2]KANG Xin, CHEN Zhi-xin, LEI Hang, HU Li-ming, CHEN Ren-peng. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. DOI: 10.11779/CJGE202009022
    [3]YU Shu-yang, WANG Hai-jun, REN Ran, TANG Lei, ZHONG Lin-wei, ZHANG Zhi-tao, TANG Zi-xuan. Propagation of double internal cracks under uniaxial tension based on 3D-ILC[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2367-2373. DOI: 10.11779/CJGE201912024
    [4]WANG Hai-jun, ZHANG Jiu-dan, REN Ran, TANG Lei, ZHONG Ling-wei. Embedded cracks in brittle solids induced by laser-medium interaction (3D-ILC)[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2345-2352. DOI: 10.11779/CJGE201912021
    [5]XIAO Wei-min, HUANG Wei, DING Mi, LI Zhi-jian. Method for preparing artificial columnar jointed rock mass specimens by using 3D printing technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 256-260. DOI: 10.11779/CJGE2018S2051
    [6]WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, CHUGH Yoginder P, WANG Zhi-qiang. Effect of longwall gob on distribution of mining-induced stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010
    [7]XIONG Chun-bao, LI Zhi, SUN Xuan, ZHAI Jing-sheng. Stability analysis of submarine pipelines based on 3D model reconstruction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 53-56. DOI: 10.11779/CJGE2017S2014
    [8]JU Xiao-dong, FENG Wen-juan, ZHANG Yu-jun, ZHAO Hong-bo. Crystallization stresses in brittle porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1246-1253. DOI: 10.11779/CJGE201607011
    [9]AI Zhi-yong, HU Ya-dong. Uncoupled analytical layer-element for 3D transversely isotropic multilayered foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 717-720.
    [10]CHEN Guoxing, TANG Hao, LIU Ji. 3D visualization for earthquake-induced site liquefaction potential based on volume rendering and GIS technology[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 584-590.
  • Cited by

    Periodical cited type(11)

    1. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 .
    2. 王杰,陶俊林. 内置椭球形缺陷混凝土静态劈拉试验. 成都大学学报(自然科学版). 2021(02): 207-211 .
    3. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 .
    4. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 .
    5. 陈晓东,崔海鑫,王安良,季顺迎. 基于巴西盘试验的海冰拉伸强度研究. 力学学报. 2020(03): 625-634 .
    6. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 .
    7. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 .
    8. 蔡改贫,赵小涛. 基于细观力学的矿石颗粒破碎特性研究. 应用力学学报. 2020(04): 1792-1797+1876-1877 .
    9. 王海军,李汉章,任然,汤雷,郁舒阳,张志韬. 基于3D-ILC三点弯脆性固体内裂纹扩展规律及破坏特征研究. 岩石力学与工程学报. 2019(12): 2463-2477 .
    10. 张珂,王海军,任然,汤雷,郁舒阳,刘鑫娜,顾浩. 基于3D-ILC球体45°三维双内裂纹复合断裂研究. 岩土力学. 2019(12): 4731-4739 .
    11. 郁舒阳,王海军,任然,汤雷,钟凌伟,张志韬,汤子璇. 基于3D-ILC单轴拉伸双平行内裂纹扩展规律研究. 岩土工程学报. 2019(12): 2367-2373 . 本站查看

    Other cited types(0)

Catalog

    Article views (260) PDF downloads (159) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return