• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023
Citation: ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023

Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks

More Information
  • Received Date: April 24, 2018
  • Published Date: June 24, 2019
  • As the soils in nature are distributed in layers, the desiccation cracking process of the top soil is easily constrained by the contact conditions between the soil layers under drought conditions. A series of laboratory desiccation tests are therefore conducted to investigate the influences of interfacial frictional effect between soil layers on the developing direction and evolution characteristics of soil desiccation cracking. In the tests, three slurry samples with the initial saturation are prepared and dried under a constant room temperature of 30℃. Different interfacial friction conditions are designed at the bottom of the samples to simulate the frictional effect between soil layers in nature. During drying, photos of the surface and side of the samples at regular intervals are taken to record the development process of soil cracks from different angles. Some new discoveries show: (1) The soil desiccation cracks can develop from the surface downwards and may be firstly generated from the bottom of the soil and gradually develop upwards, which is different from the previous habitual understanding; (2) During the drying process, the initial development position and development degree of cracks are constrained by both the soil properties and the substrate friction conditions. For the soils with severe inhomogeneous or obvious flaws on the surface, the cracks are generated and develop from the surface flaws of soils, while for the relatively homogeneous soils, the cracks can be firstly generated from the bottom of the soil and gradually develop upwards under the influences of the substrate friction. Moreover, after the drying is completed, the development degree of the bottom cracks of the soils is even higher than that of the surface cracks. (3) The bottom cracks mostly propagate in inclined direction, and they are probably related to the developed shear stress. (4) During drying, the soil shrinks concentrically, and noticeable shrinkage nucleus at
  • [1]
    KODIKARA J, COSTA S.Desiccation cracking in clayey soils: mechanisms and modelling[M]// Multiphysical Testing of Soils and Shales. Berlin: Springer, 2013: 21-32.
    [2]
    HEWITT P J, PHILIP L K.Problems of clay desiccation in composite lining systems[J]. Engineering Geology, 1999, 53(2): 107-113.
    [3]
    RAYHANI M H, YANFUL E K, FAKHER A.Desiccation- induced cracking and its effect on the hydraulic conductive[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283.
    [4]
    NELSON J D, MILLER D J.Expansive soils: problems and practice in foundation and pavement engineering[M]. New York: John Wiley, 1992.
    [5]
    AYAD R, KONRAD J M, SOULIÉ M.Desiccation of a sensitive clay: application of the model CRACK[J]. International Zoo Yearbook, 1997, 34(34): 943-951.
    [6]
    LOZADA C, THOREL L, CAICEDO B.Effects of cracks and desiccation on the bearing capacity of soil deposits[J]. Géotechnique Letters, 2015, 5(3): 112-117.
    [7]
    BAKER R.Tensile strength, tension cracks, and stability of slopes[J]. Soils & Foundations, 1981, 21(2): 1-19.
    [8]
    陈守义. 考虑入渗和蒸发影响的土坡稳定性分析方法[J]. 岩土力学, 1997(2): 8-12.
    (CHEN Shou-yi.A method of stability analysis taken effects of infiltration and evaporation into consideration for soil slopes[J]. Rock and Soil Mechanics, 1997(2): 8-12. (in Chinese))
    [9]
    姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609.
    (YAO Hai-lin, ZHENG Shao-he, CHEN Shou-yi, et al.Analysis on the slope stability of expansive soils considering cracks and infiltration of rain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606-609. (in Chinese))
    [10]
    殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
    (YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al.Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese))
    [11]
    TANG C S, CUI Y J, TANG A M, et al.Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
    [12]
    TANG C, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3): 204-219.
    [13]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese))
    [14]
    TOWNER G D.The mechanics of cracking of drying clay[J]. Journal of Agricultural Engineering Research, 1987, 36(2): 115-124.
    [15]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[J]. Soil Science Society of America Journal, 1976, 40(4): 827-866.
    [16]
    LAKSHMIKANTHAM R, PRATPERE C, LEDESMA- ALBERTO.Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2012, 49(3): 264-284.
    [17]
    袁权, 谢锦宇, 任柯. 边界约束对膨胀土干缩开裂的影响[J]. 工程地质学报, 2016, 24(4): 604-609.
    (YUAN Quan, XIE Jin-yu, REN Ke, et al.Effect of boundary constrains on desiccation crack of swelling soil[J]. Journal of Engineering Geology, 2016, 24(4): 604-609. (in Chinese))
    [18]
    易顺民, 黎志恒, 张延中. 膨胀土裂隙结构的分形特征及其意义[J]. 岩石工程学报, 1999, 21(3): 294-298.
    (YI Shun-min, LI Zhi-heng, ZHANG Yan-zhong.The fractal characteristics of fractures in expansion soil and its significance[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 294-298. (in Chinese))
    [19]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011(6): 875-881.
    (TANG Chao-sheng, SHI Bin, GU Kai.Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011(6): 875-881. (in Chinese))
    [20]
    TANG C S, CUI Y J, SHI B, et al.Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118.
    [21]
    LIU C, TANG C S, SHI B, et al.Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57(4): 77-80.
    [22]
    KODIKARA J, BARBOUR S L, FREDLUND D G.An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 1997, 34(4): 477-488.
    [23]
    唐朝生, 施斌, 刘春. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese))
    [24]
    唐朝生, 王德银, 施斌. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 33(12): 2298-2305.
    (TANG Chao-sheng, WANG De-yin, SHI Bin, et al.Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 33(12): 2298-2305. (in Chinese))
    [25]
    MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [26]
    FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [27]
    YESILLER N, MILLER C J, INCI G, et al.Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1): 105-121.
    [28]
    AMARASIRI A L, COSTA S, KODIKARA J K.Determination of cohesive properties for mode I fracture from compacted clay beams[J]. Canadian Geotechnical Journal, 2011, 48(8): 1163-1173.
    [29]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553.
    (ZENG Hao, TANG Chao-sheng, LIU Chang-li, et al.Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. (in Chinese))
    [30]
    HUECKEL T.On effective stress concepts and deformation in clays subjected to environmental loads: discussion[J]. Canadian Geotechnical Journal, 1992, 29(6): 1120-1125
    [31]
    刘昌黎, 唐朝生, 李昊达, 等. 界面粗糙度对土体龟裂影响的试验研究[J]. 工程地质学报, 2017, 25(5): 1314-1321.
    (LIU Chang-li, TANG Chao-sheng, LI Hao-da, et al.Experimental study on the effect of interfacial roughness on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2017, 25(5): 1314-1321. (in Chinese))
    [32]
    SHORLIN K A, DE BRUYN J R, GRAHAM M, et al. Development and geometry of isotropic and directional shrinkage-crack patterns[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1999, 61(6 Pt B): 6950.
    [33]
    GROISMAN A, KAPLAN E.An experimental study of cracking induced by desiccation[J]. Europhysics Letters, 2007, 25(6): 415.
    [34]
    PERON H, HUECKEL T, LALOUI L, et al.Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification.[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201.
    [35]
    PERON H, LALOUI L, HU L, et al.Desiccation cracking of soils[J]. Chemosphere, 2009, 13(7/8): 869-888.
    [36]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018: 1415-1423.
    (TANG Chao-sheng, SHI Bin, CUI Yu-Jun.Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018: 1415-1423. (in Chinese))
    [37]
    TOLLENAAR R N, PAASSEN L A V, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31.
    [38]
    LU N, LIKOS W J.Unsaturated soil mechanics[M]. J. Wiley, 2004.
    [39]
    TANG C S, SHI B, LIU C, et al.Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1): 69-77.
  • Cited by

    Periodical cited type(14)

    1. 孙海波,丁佳祺,邓云鹏,吕亚歌,高海彦. 黏土内部边界与含水率下限对干缩裂隙的影响. 科技通报. 2024(05): 65-72 .
    2. 谢思凯,韦杰,康进承. 紫色土坡耕地埂坎土壤裂隙发育及其对抗剪强度的影响. 土壤通报. 2023(03): 577-586 .
    3. 黄芙蓉,方雅蓉,谭梦娟,汪卓,李佳,王亮,郭鸿. 聚丙烯纤维改良膨胀土干缩裂隙试验研究. 岩土工程技术. 2023(04): 461-464 .
    4. 李颖,韦杰,罗华进,甘凤玲. 水分耗散下紫色土埂坎裂隙发育及影响因素. 水土保持学报. 2022(01): 38-44 .
    5. 刘瑞琪,雷学文,万勇,刘磊. 含水率梯度作用下填埋场压实黏土层开裂特性试验与机理分析. 力学与实践. 2022(01): 12-21 .
    6. 龙郧铠,张家明,陈茂. 中国南方碳酸盐岩上覆红黏土龟裂研究进展. 武汉理工大学学报(交通科学与工程版). 2022(03): 506-512 .
    7. 周峙,张表志,张家铭,罗易. 基于COD断裂准则的土体干缩裂隙萌生扩展力学机制. 土木工程学报. 2022(11): 62-71 .
    8. 岳建伟,李嘉乐,王思远,陈颖,邢旋旋,杨雪. 定远营遗址稳定性和微观劣化的研究. 科学技术与工程. 2021(10): 4159-4166 .
    9. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    10. 宋京雷,何伟,郝社锋,蒋波,刘瑾,卜凡,宋泽卓. 岩质边坡表层黏性客土抗裂特性试验研究. 水文地质工程地质. 2021(03): 144-149 .
    11. 林朱元,唐朝生,曾浩,王怡舒,程青,施斌. 土体干缩开裂过程的边界效应试验与离散元模拟. 岩土工程学报. 2020(02): 372-380 . 本站查看
    12. 郭鸿,马帅帅,王普,曹龙,陈能远,薛道耐,胡囝楠. 土工格栅抑制黄土干缩裂隙试验分析. 水资源与水工程学报. 2020(04): 118-123 .
    13. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .
    14. 张晨,朱洵,黄英豪,郭万里,韩迅. 湿干冻融耦合作用下膨胀土裂隙发育方向性研究. 岩土工程学报. 2020(S1): 234-238 . 本站查看

    Other cited types(13)

Catalog

    Article views (348) PDF downloads (165) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return