• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023
Citation: ZENG Hao, TANG Chao-sheng, LIN Luan, XU Jin-jian, LIU Jun-dong, RONG De-zheng, WANG Dong-wei, SHI Bin. Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1172-1180. DOI: 10.11779/CJGE201906023

Interfacial friction dependence of propagation direction and evolution characteristics of soil desiccation cracks

More Information
  • Received Date: April 24, 2018
  • Published Date: June 24, 2019
  • As the soils in nature are distributed in layers, the desiccation cracking process of the top soil is easily constrained by the contact conditions between the soil layers under drought conditions. A series of laboratory desiccation tests are therefore conducted to investigate the influences of interfacial frictional effect between soil layers on the developing direction and evolution characteristics of soil desiccation cracking. In the tests, three slurry samples with the initial saturation are prepared and dried under a constant room temperature of 30℃. Different interfacial friction conditions are designed at the bottom of the samples to simulate the frictional effect between soil layers in nature. During drying, photos of the surface and side of the samples at regular intervals are taken to record the development process of soil cracks from different angles. Some new discoveries show: (1) The soil desiccation cracks can develop from the surface downwards and may be firstly generated from the bottom of the soil and gradually develop upwards, which is different from the previous habitual understanding; (2) During the drying process, the initial development position and development degree of cracks are constrained by both the soil properties and the substrate friction conditions. For the soils with severe inhomogeneous or obvious flaws on the surface, the cracks are generated and develop from the surface flaws of soils, while for the relatively homogeneous soils, the cracks can be firstly generated from the bottom of the soil and gradually develop upwards under the influences of the substrate friction. Moreover, after the drying is completed, the development degree of the bottom cracks of the soils is even higher than that of the surface cracks. (3) The bottom cracks mostly propagate in inclined direction, and they are probably related to the developed shear stress. (4) During drying, the soil shrinks concentrically, and noticeable shrinkage nucleus at
  • [1]
    KODIKARA J, COSTA S.Desiccation cracking in clayey soils: mechanisms and modelling[M]// Multiphysical Testing of Soils and Shales. Berlin: Springer, 2013: 21-32.
    [2]
    HEWITT P J, PHILIP L K.Problems of clay desiccation in composite lining systems[J]. Engineering Geology, 1999, 53(2): 107-113.
    [3]
    RAYHANI M H, YANFUL E K, FAKHER A.Desiccation- induced cracking and its effect on the hydraulic conductive[J]. Canadian Geotechnical Journal, 2007, 44(3): 276-283.
    [4]
    NELSON J D, MILLER D J.Expansive soils: problems and practice in foundation and pavement engineering[M]. New York: John Wiley, 1992.
    [5]
    AYAD R, KONRAD J M, SOULIÉ M.Desiccation of a sensitive clay: application of the model CRACK[J]. International Zoo Yearbook, 1997, 34(34): 943-951.
    [6]
    LOZADA C, THOREL L, CAICEDO B.Effects of cracks and desiccation on the bearing capacity of soil deposits[J]. Géotechnique Letters, 2015, 5(3): 112-117.
    [7]
    BAKER R.Tensile strength, tension cracks, and stability of slopes[J]. Soils & Foundations, 1981, 21(2): 1-19.
    [8]
    陈守义. 考虑入渗和蒸发影响的土坡稳定性分析方法[J]. 岩土力学, 1997(2): 8-12.
    (CHEN Shou-yi.A method of stability analysis taken effects of infiltration and evaporation into consideration for soil slopes[J]. Rock and Soil Mechanics, 1997(2): 8-12. (in Chinese))
    [9]
    姚海林, 郑少河, 陈守义. 考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2001, 23(5): 606-609.
    (YAO Hai-lin, ZHENG Shao-he, CHEN Shou-yi, et al.Analysis on the slope stability of expansive soils considering cracks and infiltration of rain[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606-609. (in Chinese))
    [10]
    殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.
    (YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al.Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese))
    [11]
    TANG C S, CUI Y J, TANG A M, et al.Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils[J]. Engineering Geology, 2010, 114(3/4): 261-266.
    [12]
    TANG C, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3): 204-219.
    [13]
    唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behavior of expansive soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673. (in Chinese))
    [14]
    TOWNER G D.The mechanics of cracking of drying clay[J]. Journal of Agricultural Engineering Research, 1987, 36(2): 115-124.
    [15]
    MITCHELL J K, SOGA K.Fundamentals of soil behavior[J]. Soil Science Society of America Journal, 1976, 40(4): 827-866.
    [16]
    LAKSHMIKANTHAM R, PRATPERE C, LEDESMA- ALBERTO.Experimental evidence of size effect in soil cracking[J]. Canadian Geotechnical Journal, 2012, 49(3): 264-284.
    [17]
    袁权, 谢锦宇, 任柯. 边界约束对膨胀土干缩开裂的影响[J]. 工程地质学报, 2016, 24(4): 604-609.
    (YUAN Quan, XIE Jin-yu, REN Ke, et al.Effect of boundary constrains on desiccation crack of swelling soil[J]. Journal of Engineering Geology, 2016, 24(4): 604-609. (in Chinese))
    [18]
    易顺民, 黎志恒, 张延中. 膨胀土裂隙结构的分形特征及其意义[J]. 岩石工程学报, 1999, 21(3): 294-298.
    (YI Shun-min, LI Zhi-heng, ZHANG Yan-zhong.The fractal characteristics of fractures in expansion soil and its significance[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 294-298. (in Chinese))
    [19]
    唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011(6): 875-881.
    (TANG Chao-sheng, SHI Bin, GU Kai.Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011(6): 875-881. (in Chinese))
    [20]
    TANG C S, CUI Y J, SHI B, et al.Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166(1): 111-118.
    [21]
    LIU C, TANG C S, SHI B, et al.Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57(4): 77-80.
    [22]
    KODIKARA J, BARBOUR S L, FREDLUND D G.An idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 1997, 34(4): 477-488.
    [23]
    唐朝生, 施斌, 刘春. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193. (in Chinese))
    [24]
    唐朝生, 王德银, 施斌. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 33(12): 2298-2305.
    (TANG Chao-sheng, WANG De-yin, SHI Bin, et al.Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 33(12): 2298-2305. (in Chinese))
    [25]
    MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [26]
    FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993.
    [27]
    YESILLER N, MILLER C J, INCI G, et al.Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57(1): 105-121.
    [28]
    AMARASIRI A L, COSTA S, KODIKARA J K.Determination of cohesive properties for mode I fracture from compacted clay beams[J]. Canadian Geotechnical Journal, 2011, 48(8): 1163-1173.
    [29]
    曾浩, 唐朝生, 刘昌黎, 等. 控制厚度条件下土体干缩开裂的界面摩擦效应[J]. 岩土工程学报, 2019, 41(3): 544-553.
    (ZENG Hao, TANG Chao-sheng, LIU Chang-li, et al.Effects of boundary friction and layer thickness on desiccation cracking behaviors of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 544-553. (in Chinese))
    [30]
    HUECKEL T.On effective stress concepts and deformation in clays subjected to environmental loads: discussion[J]. Canadian Geotechnical Journal, 1992, 29(6): 1120-1125
    [31]
    刘昌黎, 唐朝生, 李昊达, 等. 界面粗糙度对土体龟裂影响的试验研究[J]. 工程地质学报, 2017, 25(5): 1314-1321.
    (LIU Chang-li, TANG Chao-sheng, LI Hao-da, et al.Experimental study on the effect of interfacial roughness on desiccation cracking behavior of soil[J]. Journal of Engineering Geology, 2017, 25(5): 1314-1321. (in Chinese))
    [32]
    SHORLIN K A, DE BRUYN J R, GRAHAM M, et al. Development and geometry of isotropic and directional shrinkage-crack patterns[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1999, 61(6 Pt B): 6950.
    [33]
    GROISMAN A, KAPLAN E.An experimental study of cracking induced by desiccation[J]. Europhysics Letters, 2007, 25(6): 415.
    [34]
    PERON H, HUECKEL T, LALOUI L, et al.Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification.[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201.
    [35]
    PERON H, LALOUI L, HU L, et al.Desiccation cracking of soils[J]. Chemosphere, 2009, 13(7/8): 869-888.
    [36]
    唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018: 1415-1423.
    (TANG Chao-sheng, SHI Bin, CUI Yu-Jun.Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018: 1415-1423. (in Chinese))
    [37]
    TOLLENAAR R N, PAASSEN L A V, JOMMI C. Observations on the desiccation and cracking of clay layers[J]. Engineering Geology, 2017, 230: 23-31.
    [38]
    LU N, LIKOS W J.Unsaturated soil mechanics[M]. J. Wiley, 2004.
    [39]
    TANG C S, SHI B, LIU C, et al.Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1): 69-77.
  • Related Articles

    [1]GONG Jian-qing, PENG Wen-zhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105-2111. DOI: 10.11779/CJGE202111017
    [2]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [3]DU Chuang, DING Hong-yan, ZHANG Pu-yang, LI Jing. Analysis of steel sheet pile cofferdam using finite element method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 159-164. DOI: 10.11779/CJGE2014S2027
    [4]CAI Feng, HE Li-jun, ZHOU Xiao-peng, XU Mei-juan, MEI Guo-xiong. Finite element analysis of one-dimensional consolidation of undrained symmetry plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2141-2147.
    [5]SUN Hai-zhong. Application of finite element numerical analysis in excavation design[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 129-133.
    [6]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [7]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [8]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [9]ZHENG Hong, C. F. Lee, L. G. Tham, Ge Xiurun. Displacement-controlled method in finite element analysis and its applications[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 81-85.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 .
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 .
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 .
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 .
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 .
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 .
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 .
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 .
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 .
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 .
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 .
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 .
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 .
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 .
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 .
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 .
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 .
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 .
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 .

    Other cited types(21)

Catalog

    Article views (343) PDF downloads (164) Cited by(43)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return