• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. DOI: 10.11779/CJGE201906018
Citation: SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. DOI: 10.11779/CJGE201906018

Experimental study on precipitation rate of MICP under low temperatures

More Information
  • Received Date: August 02, 2018
  • Published Date: June 24, 2019
  • The low deposition rate of microbial solidification technology in low temperatures often restricts its application. Bacillus megaterium is chosen, and by controlling the different temperatures and pH values, the growth characteristics and urease activities of such strain are analyzed, and the calcium carbonate precipitation yields under different temperature conditions are studied. By adding urea to nutrient solution and the domestication in low temperatures, the low precipitation rate is improved. Finally, the sand solidification tests are conducted to comparatively study the curing effect with adding urea to medium or the domestication of Bacillus megaterium in low temperatures. The results show that the higher the temperature, the faster the growth and reproduction of Bacillus megaterium and the stronger the urease activity. Low temperatures obviously inhibit its growth and urease activity. When pH is 8, the growth and reproduction of bacillus are the fastest, and the urease activity is the strongest. The higher the temperature, the higher the deposition rate. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can obviously increase the speed of reproduction and precipitation yield, which can effectively solve the problem of lacking calcium carbonate precipitation at low temperatures. By combining the two methods, the increase in sediment yields is more obvious. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can improve the effect of soil solidification, and at the same time, using the two methods together, the curing effect promotion is more obvious. Therefore, the study can effectively solve the problem that less precipitation at low temperatures will obstacle actual engineering application, and lay a solid foundation for the subsequent application of MICP technology at low temperatures.
  • [1]
    WHIFFIN V S.Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
    [2]
    钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
    (QIAN Cun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock & Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese))
    [3]
    WHIFFIN V S, VAN Paassen L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
    [4]
    DEJONG J T, MORTENSEN M B, MARTINEZ B C, et al.Biomediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [5]
    VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175.
    [6]
    WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al.Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094.
    [7]
    WEAVER T, BURBANK M, LEWIS R, et al.Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 3975-3983.
    [8]
    CHU J, IVANOV V.Iron- and calcium-based biogrouts for soil improvement[C]// Proceedings of Geo-Congress 2014. Atlanta, 2014: 1596-1601.
    [9]
    HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
    [10]
    孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230.
    (SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Sand solidification test based on microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese))
    [11]
    孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944.
    (SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese))
    [12]
    张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009, 46(2): 227-234.
    (ZHANG Hui-zhi, SHI Xue-zheng, YU Dong-sheng, et al.Seasonal and regional veriations of soil temperature in China[J]. Acta Pedologica Sinica, 2009, 46(2): 227-234. (in Chinese))
    [13]
    彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
    (PENG Jie, HE Xiang, LIU Zhi-ming, et al.Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese))
    [14]
    GARRITY G, VOS P D, JONES D, et al.Bergey’s manual of systematic bacteriology. volume 3. the firmicutes[M]// Bergey's Manual of Systematic Bacteriology. Springer, 2009: 89-100.
    [15]
    FREDRICKSON J K, FLETCHER M.Subsurface microbiology and biogeochemistry[M]. New York: Wiley, 2001.
    [16]
    JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90:96-104.
    [17]
    ZHANG Y, GUO H X, CHENG X H.Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77: 160-167.
    [18]
    徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313.
    (XU Ya-tong.The influence of pH values and temperature on denitrification[J]. China Environmental Science, 1994, 14(4): 308-313. (in Chinese))
  • Related Articles

    [1]Understanding the governing equations of one-dimensional finite strain consolidation of saturated soils[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240077
    [2]YAO Chi, SHAO Yu-long, YANG Jian-hua, HE Chen, HUANG Fan, ZHOU Chuang-bing. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008
    [3]BAI Qing-bo, LI Xu, TIAN Ya-hu, FANG Jian-hong. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 131-136. DOI: 10.11779/CJGE2015S2026
    [4]CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025-1030. DOI: 10.11779/CJGE201506008
    [5]ZHANG Xing-sheng, LU Yao-ru, WANG Jian-xiu, WONG Henry. Land subsidence caused by pits seepage erosion of deep foundation with suspended diaphragm walls in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 284-290. DOI: 10.11779/CJGE2014S2050
    [6]SHAO Long-tan. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837.
    [7]A solution of Gibson’s governing equation of one-dimensional consolidation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [8]Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4).
    [9]TU Xinbin, DAI Fuchu. Analytical solution for one-dimensional heat transfer equation of soil and evaluation for thermal diffusivity[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 652-657.
    [10]Liao Hongjian, Yu Maohong, Masaru Akaishi, Zhu Bohong. Elasto viscoplastic constitutive equation of cohesive soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 41-44.
  • Cited by

    Periodical cited type(5)

    1. 张晓,周建,蒋熠诚,HORRIS K N. 接头渗漏和土体渗透各向异性对盾构隧道渗流影响的数值模拟. 中南大学学报(自然科学版). 2023(03): 1012-1022 .
    2. 薛万来,李法虎,刘晔,李彬瑜,黄炳彬. 添加膨润土对土壤渗透性及微观结构影响的研究. 灌溉排水学报. 2022(09): 85-92 .
    3. 崔子晏,张凌凯. 北疆某工程膨胀土的力学特性及微观机制试验研究. 水利水运工程学报. 2022(06): 103-112 .
    4. 胡浩,周建,张晓,蒋熠诚. 软土渗透各向异性特性及其微观机理研究. 低温建筑技术. 2021(06): 101-105 .
    5. 赵茜,苏立君,刘华,杨金熹. 冻融循环对黄土渗透系数各向异性影响的试验研究. 冰川冻土. 2020(03): 843-853 .

    Other cited types(8)

Catalog

    Article views (345) PDF downloads (149) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return