Citation: | SUN Xiao-hao, MIAO Lin-chang, WU Lin-yu, WANG Cheng-cheng, CHEN Run-fa. Experimental study on precipitation rate of MICP under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1133-1138. DOI: 10.11779/CJGE201906018 |
[1] |
WHIFFIN V S.Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
|
[2] |
钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
(QIAN Cun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock & Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese)) |
[3] |
WHIFFIN V S, VAN Paassen L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
|
[4] |
DEJONG J T, MORTENSEN M B, MARTINEZ B C, et al.Biomediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
|
[5] |
VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175.
|
[6] |
WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al.Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094.
|
[7] |
WEAVER T, BURBANK M, LEWIS R, et al.Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 3975-3983.
|
[8] |
CHU J, IVANOV V.Iron- and calcium-based biogrouts for soil improvement[C]// Proceedings of Geo-Congress 2014. Atlanta, 2014: 1596-1601.
|
[9] |
HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
|
[10] |
孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230.
(SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Sand solidification test based on microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese)) |
[11] |
孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944.
(SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese)) |
[12] |
张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009, 46(2): 227-234.
(ZHANG Hui-zhi, SHI Xue-zheng, YU Dong-sheng, et al.Seasonal and regional veriations of soil temperature in China[J]. Acta Pedologica Sinica, 2009, 46(2): 227-234. (in Chinese)) |
[13] |
彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
(PENG Jie, HE Xiang, LIU Zhi-ming, et al.Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese)) |
[14] |
GARRITY G, VOS P D, JONES D, et al.Bergey’s manual of systematic bacteriology. volume 3. the firmicutes[M]// Bergey's Manual of Systematic Bacteriology. Springer, 2009: 89-100.
|
[15] |
FREDRICKSON J K, FLETCHER M.Subsurface microbiology and biogeochemistry[M]. New York: Wiley, 2001.
|
[16] |
JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90:96-104.
|
[17] |
ZHANG Y, GUO H X, CHENG X H.Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77: 160-167.
|
[18] |
徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313.
(XU Ya-tong.The influence of pH values and temperature on denitrification[J]. China Environmental Science, 1994, 14(4): 308-313. (in Chinese)) |
[1] | Understanding the governing equations of one-dimensional finite strain consolidation of saturated soils[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240077 |
[2] | YAO Chi, SHAO Yu-long, YANG Jian-hua, HE Chen, HUANG Fan, ZHOU Chuang-bing. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008 |
[3] | BAI Qing-bo, LI Xu, TIAN Ya-hu, FANG Jian-hong. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 131-136. DOI: 10.11779/CJGE2015S2026 |
[4] | CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025-1030. DOI: 10.11779/CJGE201506008 |
[5] | ZHANG Xing-sheng, LU Yao-ru, WANG Jian-xiu, WONG Henry. Land subsidence caused by pits seepage erosion of deep foundation with suspended diaphragm walls in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 284-290. DOI: 10.11779/CJGE2014S2050 |
[6] | SHAO Long-tan. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837. |
[7] | A solution of Gibson’s governing equation of one-dimensional consolidation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5). |
[8] | Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4). |
[9] | TU Xinbin, DAI Fuchu. Analytical solution for one-dimensional heat transfer equation of soil and evaluation for thermal diffusivity[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 652-657. |
[10] | Liao Hongjian, Yu Maohong, Masaru Akaishi, Zhu Bohong. Elasto viscoplastic constitutive equation of cohesive soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 41-44. |