• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Zhi-ping, NIU Jing-tai, PAN Min, PENG You-wen, CUI Meng. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. DOI: 10.11779/CJGE201906012
Citation: DENG Zhi-ping, NIU Jing-tai, PAN Min, PENG You-wen, CUI Meng. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. DOI: 10.11779/CJGE201906012

Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters

More Information
  • Received Date: May 27, 2018
  • Published Date: June 24, 2019
  • The geological uncertainty is often ignored in slope reliability-based design, even though the spatial variability of soil parameters is considered. A full probabilistic design method is proposed for the slopes considering the geological uncertainty and spatial variability of soil parameters. In the full probabilistic design framework, a generalized coupled Markov chain model is combined with a random field model to simultaneously characterize the geological uncertainty and spatial variability of soil parameters. The procedure for this method is presented. A slope is taken as an example for the reliability-based design using the borehole data in Perth, Australia. In order to illustrate the importance of considering the geological uncertainty and spatial variability of soil parameters in the slope reliability-based design, the reliability design results associated with two cases, i. e. only considering the spatial variability of soil parameters and considering both types of uncertainties, are compared. The results indicate that the proposed method can effectively conduct the slope reliability-based design considering these two types of uncertainties. If only the spatial variability of soil parameters is considered, the reliability design results mainly depend on the used geological profiles. If the geotechnical practitioners infer a geological profile with a higher proportion of strong soil materials than the reality, the resulting optimal design scheme will lead to dangerous slope. In the opposite case, the resulting
  • [1]
    PHOON K K.Reliability-based design in geotechnical engineering: computations and applications[M]. UK: Taylor and Francis, 2008.
    [2]
    ELKATEB T, CHALATURNYK R, ROBERTSON P K.An overview of soil heterogeneity quantification and implications on geotechnical field problems[J]. Canadian Geotechnical Journal, 2003, 40(1): 1-15.
    [3]
    GRIFFITHS D V, FENTON G A.Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.
    [4]
    苏永华, 赵明华, 邹志鹏, 等. 边坡稳定性分析的Sarma模式及其可靠度计算方法[J]. 水利学报, 2006, 37(4): 457-463.
    (SU Yong-hua, ZHAO Ming-hua, ZOU Zhi-peng, et al.Sarma model for slope stability analysis and its reliability degree calculation method[J]. Journal of Hydraulic Engineering, 2006, 37(4): 457-463. (in Chinese))
    [5]
    胡群芳. 基于地层变异的盾构隧道工程风险分析及其应用研究[D]. 上海: 同济大学, 2006.
    (HU Qun-fang.Risk analysis and its application for tunnel works based on research of stratum and soil spatial variability[D]. Shanghai: Tongji University, 2006. (in Chinese))
    [6]
    谭晓慧, 王建国, 刘新荣, 等. 边坡稳定的有限元可靠度计算及敏感性分析[J]. 岩石力学与工程学报, 2007, 26(1): 115-122.
    (TAN Xiao-hui, WANG Jian-guo, LIU Xin-rong, et al.Finite element reliability computation and sensitivity analysis of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 115-122. (in Chinese))
    [7]
    祁小辉, 李典庆, 曹子君, 等. 考虑地层变异的边坡稳定不确定性分析[J]. 岩土力学, 2017, 38(5): 1385-1396.
    (QI Xiao-hui, LI Dian-qing, CAO Zi-jun, et al.Uncertainty analysis of slope stability considering geologic uncertainty[J]. Rock and Soil Mechanics, 2017, 38(5): 1385-1396. (in Chinese))
    [8]
    邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 986-995.
    (DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, et al.Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. (in Chinese))
    [9]
    LOEHR J E, FINLEY C A, HUACO D.Procedures for design of earth slopes using LRFD[R]. Columbia: University of Missouri, 2005.
    [10]
    张璐璐, 张洁, 徐耀, 等. 岩土工程可靠度理论[M]. 上海: 同济大学出版社, 2011.
    (ZHANG Lu-lu, ZHANG Jie, XU Yao, et al.Reliability theory of geotechnical engineering[M]. Shanghai: Tongji University Press, 2011. (in Chinese))
    [11]
    PAIKOWSKY S G, BIRGISSON B, NGUYEN T, et al.Load and resistance factor design (LRFD) for deep foundations (National Cooperative Highway Research Program (NCHRP) Report 507)[R]. Washington D C: National Research Council, 2004.
    [12]
    KIM D, SALGADO R.Limit states and load and resistance design of slopes and retaining structures (Publication No. FHWA/IN/JTRP-2008/5, SPR-2634)[R]. West Lafayette: Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, 2008.
    [13]
    SALGADO R, KIM D.Reliability analysis of load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(1): 57-73.
    [14]
    PANTELIDIS L, GRIFFITHS D V.Integrating Eurocode 7 (load and resistance factor design) using nonconventional factoring strategies in slope stability analysis[J]. Canadian Geotechnical Journal, 2014, 51(2): 208-216.
    [15]
    BECKER D E.Eighteenth Canadian geotechnical colloquium: Limit states design for foundations, Part Ⅱ: Development for the national building code of Canada[J]. Canadian Geotechnical Journal, 1997, 33(6): 984-1007.
    [16]
    ORR T L L, FARRELL E R. Geotechnical design to Eurocode 7[M]. New York: Springer Science and Business Media, 2012.
    [17]
    HONJO Y, KUSAKABE O.Proposal of a comprehensive foundation design code: Geo-code 21 ver. 2[C]// Proceedings of the International Workshop on Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design. Tokyo, 2002: 95-101.
    [18]
    LOW B K, PHOON K K.Reliability-based design and its complementary role to Eurocode 7 design approach[J]. Computers and Geotechnics, 2015, 65: 30-44.
    [19]
    WU S H, OU C Y Y, CHING J, et al. Reliability-based design for basal heave stability of deep excavations in spatially varying soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 594-603.
    [20]
    WANG Y, CAO Z.Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations[J]. Soils and Foundations, 2013, 53(6): 820-834.
    [21]
    彭兴, 李典庆, 曹子君, 等. 基于蒙特卡洛模拟的岩质边坡可靠度设计方法[J]. 岩石力学与工程学报, 2016(增刊2): 3794-3804.
    (PENG Xing, LI Dian-qing, CAO Zi-jun, et al.Reliability-based design approach of rock slopes using Monte Carlo simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(S2): 3794-3804. (in Chinese))
    [22]
    辛立光, 李典庆, 曹子君. 基于概率充分因子的高效土质边坡可靠度优化设计[J]. 武汉大学学报(工学版), 2016(5): 696-700.
    (XIN Li-guang, LI Dian-qing, CAO Zi-jun.Efficient reliability-based design optimization in soil slope using probability sufficiency factor[J]. Engineering Journal of Wuhan University, 2016(5): 696-700. (in Chinese))
    [23]
    PARK E.A multidimensional, generalized coupled Markov chain model for surface and subsurface characterization[J]. Water Resources Research, 2010, 46(11): 6291-6297.
    [24]
    邓志平, 李典庆, 祁小辉,等. 基于广义耦合马尔可夫链的地层变异性模拟方法[J]. 岩土工程学报, 2018, 40(11): 2041-2050.
    (DENG Zhi-ping, LI Dian-qing, QI Xiao-hui, et al.Simulation of geological uncertainty using modified generalized coupled Markov chain[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2041-2050. (in Chinese))
    [25]
    LU Z, ZHANG D.Stochastic simulations for flow in nonstationary randomly heterogeneous porous media using a kl-based moment-equation approach[J]. Siam Journal on Multiscale Modeling & Simulation, 2007, 6(1): 228-245.
  • Cited by

    Periodical cited type(14)

    1. 邓志平,钟敏,潘敏,郑克红,牛景太,蒋水华. 考虑参数空间变异性和基于高效代理模型的边坡可靠度分析. 岩土工程学报. 2024(02): 273-281 . 本站查看
    2. 邓志平,邹艺,潘敏,郑克红,牛景太,蒋水华. 考虑多参数空间变异性的非饱和土石坝坝坡可靠度分析. 应用基础与工程科学学报. 2024(04): 1108-1123 .
    3. 田华明,李典庆. 勘察数据变化条件下空间变异土坡稳定可靠度协同更新方法. 岩土工程学报. 2024(08): 1613-1621 . 本站查看
    4. 姜育科,沈才华,陈伟,方忠强,邱志康. 考虑地层厚度空间变异性的水下隧道差异变形预测. 大连交通大学学报. 2024(04): 76-82 .
    5. 叶冬明,张俊赟,陆军,任守勤,蓝沐林. 隔离桩对盾构隧道侧穿邻近建筑物的沉降控制效果评估. 城市轨道交通研究. 2023(05): 134-139 .
    6. 罗博华,宋志强,王飞,刘琛,刘云贺. 考虑覆盖层地基材料空间变异性的沥青混凝土心墙坝地震响应研究. 振动与冲击. 2022(02): 53-63 .
    7. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    8. 高新博,姜育科,沈才华,董玉翔,王业钊. 考虑地层空间变异性的综合管廊开挖变形预测研究. 湖南交通科技. 2022(04): 23-28 .
    9. 蒋水华,刘贤,黄发明,黄劲松,周创兵. 基于一阶逆可靠度方法的空间变异土坡坡角设计. 岩土工程学报. 2021(07): 1245-1252 . 本站查看
    10. 胡长明,袁一力,梅源,王雪艳,王娟. 基于二维随机场在圆弧曲线上局部平均化的边坡可靠度分析. 岩石力学与工程学报. 2020(02): 251-261 .
    11. 闫强,廉向东. 基于响应面法和蒙特卡洛法的公路路堑边坡稳定性可靠度分析. 西部交通科技. 2020(02): 9-12 .
    12. 杨智勇,唐栋,张蕾,祁小辉. 岩土工程简化可靠度设计方法——修正分位数法. 岩土工程学报. 2020(08): 1456-1464 . 本站查看
    13. 王桂林,杨洋,孙帆,向林川. 边坡失效概率分布特性影响因素研究. 西安建筑科技大学学报(自然科学版). 2020(04): 463-469+484 .
    14. 刘敬敏,杨绿峰,余波. 考虑空间变异性的框架结构可靠度分析方法. 计算力学学报. 2020(06): 677-684 .

    Other cited types(16)

Catalog

    Article views (337) PDF downloads (262) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return