Citation: | DENG Zhi-ping, NIU Jing-tai, PAN Min, PENG You-wen, CUI Meng. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. DOI: 10.11779/CJGE201906012 |
[1] |
PHOON K K.Reliability-based design in geotechnical engineering: computations and applications[M]. UK: Taylor and Francis, 2008.
|
[2] |
ELKATEB T, CHALATURNYK R, ROBERTSON P K.An overview of soil heterogeneity quantification and implications on geotechnical field problems[J]. Canadian Geotechnical Journal, 2003, 40(1): 1-15.
|
[3] |
GRIFFITHS D V, FENTON G A.Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.
|
[4] |
苏永华, 赵明华, 邹志鹏, 等. 边坡稳定性分析的Sarma模式及其可靠度计算方法[J]. 水利学报, 2006, 37(4): 457-463.
(SU Yong-hua, ZHAO Ming-hua, ZOU Zhi-peng, et al.Sarma model for slope stability analysis and its reliability degree calculation method[J]. Journal of Hydraulic Engineering, 2006, 37(4): 457-463. (in Chinese)) |
[5] |
胡群芳. 基于地层变异的盾构隧道工程风险分析及其应用研究[D]. 上海: 同济大学, 2006.
(HU Qun-fang.Risk analysis and its application for tunnel works based on research of stratum and soil spatial variability[D]. Shanghai: Tongji University, 2006. (in Chinese)) |
[6] |
谭晓慧, 王建国, 刘新荣, 等. 边坡稳定的有限元可靠度计算及敏感性分析[J]. 岩石力学与工程学报, 2007, 26(1): 115-122.
(TAN Xiao-hui, WANG Jian-guo, LIU Xin-rong, et al.Finite element reliability computation and sensitivity analysis of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 115-122. (in Chinese)) |
[7] |
祁小辉, 李典庆, 曹子君, 等. 考虑地层变异的边坡稳定不确定性分析[J]. 岩土力学, 2017, 38(5): 1385-1396.
(QI Xiao-hui, LI Dian-qing, CAO Zi-jun, et al.Uncertainty analysis of slope stability considering geologic uncertainty[J]. Rock and Soil Mechanics, 2017, 38(5): 1385-1396. (in Chinese)) |
[8] |
邓志平, 李典庆, 曹子君, 等. 考虑地层变异性和土体参数变异性的边坡可靠度分析[J]. 岩土工程学报, 2017, 39(6): 986-995.
(DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, et al.Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. (in Chinese)) |
[9] |
LOEHR J E, FINLEY C A, HUACO D.Procedures for design of earth slopes using LRFD[R]. Columbia: University of Missouri, 2005.
|
[10] |
张璐璐, 张洁, 徐耀, 等. 岩土工程可靠度理论[M]. 上海: 同济大学出版社, 2011.
(ZHANG Lu-lu, ZHANG Jie, XU Yao, et al.Reliability theory of geotechnical engineering[M]. Shanghai: Tongji University Press, 2011. (in Chinese)) |
[11] |
PAIKOWSKY S G, BIRGISSON B, NGUYEN T, et al.Load and resistance factor design (LRFD) for deep foundations (National Cooperative Highway Research Program (NCHRP) Report 507)[R]. Washington D C: National Research Council, 2004.
|
[12] |
KIM D, SALGADO R.Limit states and load and resistance design of slopes and retaining structures (Publication No. FHWA/IN/JTRP-2008/5, SPR-2634)[R]. West Lafayette: Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, 2008.
|
[13] |
SALGADO R, KIM D.Reliability analysis of load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(1): 57-73.
|
[14] |
PANTELIDIS L, GRIFFITHS D V.Integrating Eurocode 7 (load and resistance factor design) using nonconventional factoring strategies in slope stability analysis[J]. Canadian Geotechnical Journal, 2014, 51(2): 208-216.
|
[15] |
BECKER D E.Eighteenth Canadian geotechnical colloquium: Limit states design for foundations, Part Ⅱ: Development for the national building code of Canada[J]. Canadian Geotechnical Journal, 1997, 33(6): 984-1007.
|
[16] |
ORR T L L, FARRELL E R. Geotechnical design to Eurocode 7[M]. New York: Springer Science and Business Media, 2012.
|
[17] |
HONJO Y, KUSAKABE O.Proposal of a comprehensive foundation design code: Geo-code 21 ver. 2[C]// Proceedings of the International Workshop on Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design. Tokyo, 2002: 95-101.
|
[18] |
LOW B K, PHOON K K.Reliability-based design and its complementary role to Eurocode 7 design approach[J]. Computers and Geotechnics, 2015, 65: 30-44.
|
[19] |
WU S H, OU C Y Y, CHING J, et al. Reliability-based design for basal heave stability of deep excavations in spatially varying soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 594-603.
|
[20] |
WANG Y, CAO Z.Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations[J]. Soils and Foundations, 2013, 53(6): 820-834.
|
[21] |
彭兴, 李典庆, 曹子君, 等. 基于蒙特卡洛模拟的岩质边坡可靠度设计方法[J]. 岩石力学与工程学报, 2016(增刊2): 3794-3804.
(PENG Xing, LI Dian-qing, CAO Zi-jun, et al.Reliability-based design approach of rock slopes using Monte Carlo simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(S2): 3794-3804. (in Chinese)) |
[22] |
辛立光, 李典庆, 曹子君. 基于概率充分因子的高效土质边坡可靠度优化设计[J]. 武汉大学学报(工学版), 2016(5): 696-700.
(XIN Li-guang, LI Dian-qing, CAO Zi-jun.Efficient reliability-based design optimization in soil slope using probability sufficiency factor[J]. Engineering Journal of Wuhan University, 2016(5): 696-700. (in Chinese)) |
[23] |
PARK E.A multidimensional, generalized coupled Markov chain model for surface and subsurface characterization[J]. Water Resources Research, 2010, 46(11): 6291-6297.
|
[24] |
邓志平, 李典庆, 祁小辉,等. 基于广义耦合马尔可夫链的地层变异性模拟方法[J]. 岩土工程学报, 2018, 40(11): 2041-2050.
(DENG Zhi-ping, LI Dian-qing, QI Xiao-hui, et al.Simulation of geological uncertainty using modified generalized coupled Markov chain[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2041-2050. (in Chinese)) |
[25] |
LU Z, ZHANG D.Stochastic simulations for flow in nonstationary randomly heterogeneous porous media using a kl-based moment-equation approach[J]. Siam Journal on Multiscale Modeling & Simulation, 2007, 6(1): 228-245.
|