• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Heng, WANG Zhi-liang, SHI Gao-yang, HAO Shi-yun. Experimental and numerical studies on dynamic compression failure characteristics of granite under real-time temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 836-845. DOI: 10.11779/CJGE201905006
Citation: SHI Heng, WANG Zhi-liang, SHI Gao-yang, HAO Shi-yun. Experimental and numerical studies on dynamic compression failure characteristics of granite under real-time temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 836-845. DOI: 10.11779/CJGE201905006

Experimental and numerical studies on dynamic compression failure characteristics of granite under real-time temperatures

More Information
  • Received Date: April 10, 2018
  • Published Date: May 24, 2019
  • To investigate the thermodynamic properties of biotite granite, the mechanical response and failure process of the rock samples under different real-time temperatures (20℃, 100℃ and 200℃) are analyzed based on the laboratory tests and numerical simulations. The results show that the compression strength and elastic modulus of the granite sample are the largest at the temperature of 20 °C and the lowest at 100 °C. The fracturing degree of the sample at 100 °C is more obvious than that at 20 °C and 200 °C. As the loading rate rises, the peak strength and peak strain of the stress-strain curve increase along with the crack evolution and failure degree. At a low loading rate, the microcracks in the peripheral area of the sample are firstly initiated. The internal microcracks of the sample can be activated even at the initial stage of loading with the increase of loading rate. In addition, the proposed method for determining the Holmquist-Johnson-Cook (HJC) model parameters is proved to be feasible and accurate. The numerical simulation can well reflect the mechanical characteristics of the rock sample under the coupling action of impact loading and real-time temperatures, and the failure mode and rupture process of the sample during dynamic compression can be also illustrated realistically using the coupled HJC model and related failure criterion.
  • [1]
    李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014.
    (LI Xi-bing.Rock dynamics fundamentals and applications[M]. Beijing: Science Press, 2014. (in Chinese))
    [2]
    TIAN H, KEMPKA T, YU S, et al.Mechanical properties of sandstones exposed to high temperature[J]. Rock Mechanics & Rock Engineering, 2016, 49(1): 321-327.
    [3]
    ZHOU S W, XIA C C, HU Y S, et al.Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77: 163-173.
    [4]
    PENG J, RONG G, CAI M, et al.Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 83(4): 135-139.
    [5]
    刘石, 许金余, 支乐鹏, 等. 高温后大理岩的冲击力学特性试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 273-280.
    (LIU Shi, XU Jin-yu, ZHI Le-peng, et al.Experimental research on mechanical behavior of material after high temperatures subjected to impact loading[J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(2): 273-280. (in Chinese))
    [6]
    YIN T B, SHU R H, LI X B, et al.Comparison of mechanical properties in high temperature and thermal treatment granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1926-1937.
    [7]
    徐小丽, 高峰, 张志镇, 等. 实时高温下加载速率对花岗岩力学特性影响的试验研究[J]. 岩土力学, 2015, 36(8): 2184-2192.
    (XU Xiao-li, GAO Feng, ZHANG Zhi-zhen, et al.Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature[J]. Rock and Soil Mechanics, 2015, 36(8): 2184-2192. (in Chinese))
    [8]
    平琦, 骆轩, 马芹永, 等. 冲击载荷作用下砂岩试件破碎能耗特征[J]. 岩石力学与工程学报, 2015(增刊2): 4197-4203.
    (PING Qi, LUO Xuan, MA Qin-Yong, et al.Broken energy dissipation characteristics of sandstone specimen under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(S2): 4197-4203. (in Chinese))
    [9]
    HOKKA M, BLACK J, TKALICH D, et al.Effects of strain rate and confining pressure on the compressive behavior of Kuru granite[J]. International Journal of Impact Engineering, 2016, 91: 183-193.
    [10]
    尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析[J]. 岩石力学与工程学报, 2017, 36(4): 843-851.
    (YOU Ye-chao, LI Er-bing, TAN Yue-hu, et al.Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle[J]. Chinese Journal of Rock Mechanics and Engineering 2017, 36(4): 843-851. (in Chinese))
    [11]
    朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究[J]. 岩土工程学报, 2013, 35(3): 531-539.
    (ZHU Jing-jing, LI Xi-bing, Gong Feng-qiang, et al.Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531-539. (in Chinese))
    [12]
    ZHANG Q B, ZHAO J.Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60(8): 423-439.
    [13]
    黄明利, 唐春安. 岩石破裂过程的数值模拟研究[J]. 岩石力学与工程学报, 2000, 19(4): 468-468.
    (HUANG Ming-li, TANG Chun-an.Numerical simulation on failure process of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 468-468. (in Chinese))
    [14]
    赵坚, 陈寿根, 蔡军刚, 等. 用UDEC模拟爆炸波在节理岩体中的传播[J]. 中国矿业大学学报, 2002, 31(2): 111-115.
    (ZHAO Jian, CHEN Shou-gen, CAI Jun-gang, et al.Simulation of blast wave propagation in jointed rock mass using UDEC[J]. Journal of China University of Mining & Technology, 2002, 31(2): 111-115. (in Chinese))
    [15]
    肖明. 地下洞室施工开挖三维动态过程数值模拟分析[J]. 岩土工程学报, 2000, 22(4): 421-425.
    (XIAO Ming.Three-dimensional numerical model of construction process for underground opening[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 421-425. (in Chinese))
    [16]
    HOLMQUIST T J, JOHNSON G R, COOK W H.A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure[C]// 14th International Symposium on Ballistic. Quebec City, 1993: 591-600.
    [17]
    巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验[J]. 爆炸与冲击, 2009, 29(2): 137-142.
    (WU Xu-tao, SUN Shan-fei, LI He-ping.Numerical simulation of SHPB tests for concrete by using HJC model[J]. Explosion and Shock Waves, 2009, 29(2): 137-142. (in Chinese))
    [18]
    李成武, 王金贵, 解北京, 等. 基于HJC本构模型的煤岩SHPB实验数值模拟[J]. 采矿与安全工程学报, 2016, 33(1): 158-164.
    (LI Cheng-wu, WANG Jin-gui, XIE Bei-jing, et al.Numerical simulation of SHPB tests for coal by using HJC model[J]. Journal of Mining & Safety Engineering, 2016, 33(1): 158-164. (in Chinese))
    [19]
    王政, 楼建锋, 勇珩, 等. 岩石、混凝土和土抗侵彻能力数值计算与分析[J]. 高压物理学报, 2010, 24(3): 175-180.
    (WANG Zheng, LOU Jian-feng, YONG Heng, et al.Numerical computation and analysis on anti-penetration capability of rock, concrete and soil[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175-180. (in Chinese))
    [20]
    方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson- Cook模型参数的确定方法[J]. 工程力学, 2014, 31(3): 197-204.
    (FANG Qin, KONG Xiang-zhen, WU Hao, et al.Determination of Holmquist-Johnson-Cook constitutive model parameters of rock[J]. Engineering Mechanics, 2014, 31(3): 197-204. (in Chinese))
    [21]
    闻磊, 李夕兵, 吴秋红, 等. 花岗斑岩Holmquist- Johnson-Cook本构模型参数研究[J]. 计算力学学报, 2016, 33(5): 725-731.
    (WEN Lei, LI Xi-bing, WU Qiu-hong, et al.Study on parameters of Holmquist-Johnson-Cook model for granite porphyry[J]. Chinese Journal of Computational Mechanics, 2016, 33(5): 725-731. (in Chinese))
    [22]
    赵光明, 马文伟, 孟祥瑞. 动载作用下岩石类材料破坏模式及能量特性[J]. 岩土力学, 2015, 36(12): 3598-3605.
    (ZHAO Guang-ming, MA Wen-wei, MENG Xiang-rui.Damage modes and energy characteristics of rock-like materials under dynamic load[J]. Rock and Soil Mechanics, 2015, 36(12): 3598-3605. (in Chinese))
    [23]
    熊益波, 胡永乐, 徐进, 等. 混凝土Johnson-Holmquist模型极限面参数确定[J]. 兵工学报, 2010, 31(6): 746-751.
    (XIONG Yi-Bo, HU Yong-le, XU Jin, et al.Determining failure surface parameters of the Johnson-Holmquist concrete constitutive model[J]. Acta Armamentarii, 2010, 31(6): 746-751. (in Chinese))
    [24]
    余道兴, 宗周红, 李明鸿, 等. 基于不同材料模型的混凝土SHPB试验数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(1): 124-129.
    (YU Dao-xing, ZONG Zhou-hong, LI Ming-hong, et al.Numerical simulation of concrete SHPB test based on different material models[J]. Journal of Southeast University (Natural Science Edition) 2017, 47(1): 124-129. (in Chinese))
    [25]
    刘学伟, 刘泉声, 卢超波, 等. 温度-应力耦合作用下岩体裂隙扩展的数值流形方法研究[J]. 岩石力学与工程学报, 2014, 33(7): 1432-1441.
    (LIU Xue-wei, LIU Quan-sheng, LU Chao-bo, et al.A numerical manifold method for propagation of rock mass considering thermal-mechanical coupling[J]. Chinese Journal of Rock Mechanics & Engineering, 2014, 33(7): 1432-1441. (in Chinese))
    [26]
    吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(6): 789-795.
    (WU Sai, ZHAO Jun-hai, WANG Juan, et al.Study on parameters of HJC constitutive model based on numerical simulation of concrete SHPB test[J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 789-795. (in Chinese))
    [27]
    叶序双. 爆炸力学基础[M]. 南京: 工程兵工程学院, 2004.
    (YE Xu-shuang.Basis of dynamic explosion[M]. Nanjing: Engineering Institute of Engineering Corps, 2004. (in Chinese))
    [28]
    王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法模拟[J]. 爆炸与冲击, 2018, 38(6): 1419-1428.
    (WANG Zhi-liang, BI Cheng-cheng, LI Hong-ru.Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm[J]. Explosion and Shock Waves, 2018, 38(6): 1419-1428. (in Chinese))

Catalog

    Article views (291) PDF downloads (230) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return