• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHU Jing-lei, MA Jian-lin, JIANG Bing-nan, LI Meng-hao, ZHANG Kai. Experimental study on side friction distribution of caissons during sinking in water[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 707-716. DOI: 10.11779/CJGE201904014
Citation: CHU Jing-lei, MA Jian-lin, JIANG Bing-nan, LI Meng-hao, ZHANG Kai. Experimental study on side friction distribution of caissons during sinking in water[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 707-716. DOI: 10.11779/CJGE201904014

Experimental study on side friction distribution of caissons during sinking in water

More Information
  • Received Date: April 16, 2018
  • Published Date: April 24, 2019
  • A sinking simulation experiment on a deep and large caisson is carried out based on the main caisson of Shanghai-Nomtong Bridge. Through the analysis of the whole dynamic sinking, it is determined that the effective stress on the sidewall is affected by various factors such as sinking rate, pressure relaxation, inclination, sand-casting and sudden sinking. After stopping sand suction, the effective stress of the sidewall changes from a dynamic distribution to a quasi-static one, the overall trend is decreasing and shows the reduction of extreme points and recovery of pressure relaxation zone. The arrangement of the step can reduce the total side friction of the caisson, and the reduction mainly comes from the vertical section of the caisson. It is found that the sidewall of stepped caisson can be divided into linear zone, step zone, excess zone and pressure relaxation zone. A model for calculating the side friction of the caisson in vertical state is established based on the influences of the step and verified by the on-site monitoring tests on No. 29 caisson of Shanghai-Nantong Bridge. The inclination the of caisson causes a change in the effective stress distribution of the sidewall, and the increased earth pressure generated by the compaction is 3~4 times the active earth pressure of the corresponding side.
  • [1]
    WALEY G, ALLENBY D, KILBURN D.Examples of open caisson sinking in Scotland[J]. Geotechnical Engineering, 2009, 162(1): 59-70.
    [2]
    叶政青, 李珍烈, 张觉生. 沉井[M]. 北京: 中国建筑工业出版社, 1983.
    (YE Zheng-qing, LI Zhen-lie, ZHANG Jue-sheng.Caissons[M]. Beijing: China Architecture and Building Press, 1983. (in Chinese))
    [3]
    段良策, 殷奇. 沉井设计与施工[M]. 上海: 同济大学出版社, 2006.
    (DUAN Liang-ce, YIN Qi.Design and construction of caissons[M]. Shanghai: Tongji University Press, 2006. (in Chinese))
    [4]
    张凤祥. 沉井沉箱设计、施工及实例[M]. 北京: 中国建筑工业出版社, 2010.
    (ZHANG Feng-xiang, Design, construction and examples of caissons and open caissons[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [5]
    张勋, 黄茂松. 砂土中沉井加桩复合基础水平静力及循环模型试验[J]. 岩土工程学报, 2015, 37(增刊2): 121-124.
    (ZHANG Xun, HUANG Mao-song.Model tests on a caisson-pile composite foundation in sand subjected to lateral static and cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 121-124. (in Chinese))
    [6]
    张鸿, 刘鹏, 肖文福. 泰州大桥中塔深水超深巨型沉井施工技术[J]. 岩土工程学报, 2008, 30(增刊1): 559-563.
    (ZHANG Hong, LIU Peng, XIAO Wen-fu.Construction technology of super-large deepwater caisson of middle tower of Taizhou Bridge[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 559-563. (in Chinese))
    [7]
    王岩. 大型沉井荷载分布模式研究[D]. 南京: 东南大学, 2011.
    (WANG Yan.Study on load distribution pattern of large caisson[D]. Nanjing: Southeast University, 2011. (in Chinese))
    [8]
    冯广胜, 盛华, 罗瑞华. 城市桥梁超大沉井关键施工技术[J]. 桥梁建设, 2015, 45(4): 107-112.
    (FENG Guang-sheng, SHENG Hua, LUO Rui-hua.Key construction techniques for very huge caisson of a city bridge[J]. Bridge Construction, 2015, 45(4): 107-112. (in Chinese))
    [9]
    王建, 刘杨, 张煜. 沉井侧壁摩阻力室内试验研究[J]. 岩土力学, 2013, 34(3): 659-666.
    (WANG Jian, LIU Yang, ZHANG Yu.Model test on sidewall friction of open caisson[J]. Rock and Soil Mechanics, 2013, 34(3): 659-666. (in Chinese))
    [10]
    穆保岗, 别倩, 赵学亮, 等. 沉井下沉期荷载分布特征的细观试验[J]. 中国公路学报, 2014, 27(9): 49-56.
    (MU Bao-gang, BIE Qian, ZHAO Xue-liang, et al.Meso-experiment on caisson load distribution characteristics during sinking[J]. China Journal of Highway and Transport, 2014, 27(9): 49-56. (in Chinese))
    [11]
    刘青. 沉井结构侧壁土压力分布研究[D]. 西安: 西安建筑科技大学, 2010.
    (LIU Qing.Study for the lateral earth pressure of open caisson structure[D]. Xi'an: Xi'an University of Architecture and Technology, 2010. (in Chinese))
    [12]
    陈晓平, 茜平一, 张志勇. 沉井基础下沉阻力分布特征研究[J]. 岩土工程学报, 2005, 27(2): 148-152.
    (CHEN Xiao-ping, QIAN Ping-yi, ZHANG Zhi-yong.Study on penetration resistance distribution characteristic of sunk shaft foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 148-152. (in Chinese))
    [13]
    穆保岗, 朱建民, 牛亚洲. 南京长江四桥北锚碇沉井监控方案及成果分析[J]. 岩土工程学报, 2011, 33(2): 269-274.
    (MU Bao-gang, ZHU Jian-min, NIU Ya-zhou.Monitoring and analysis of north anchorage caisson of Fourth Nanjing Yangtze River Bridge[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 269-274. (in Chinese))
    [14]
    蒋炳楠. 沪通大桥超深大沉井下沉阻力及突沉现场监测研究[D]. 成都: 西南交通大学, 2016.
    (JIANG Bing-nan.Resistance and suddenly sinking monitor research of deep and large open caisson of Hutong bridge[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese))
    [15]
    高宗余. 沪通长江大桥主桥技术特点[J]. 桥梁建设, 2014, 44(2): 1-5.
    (GAO Zong-yu, Technical characteristics of main bridge of hutong changjiang river bridge[J]. Bridge Construction, 2014, 44(2): 1-5. (in Chinese))
    [16]
    徐力, 高宗余, 梅新咏. 沪通长江大桥公铁合建斜拉桥桥塔基础设计[J]. 桥梁建设, 2015, 45(3): 7-12.
    (XU Li, GAO Zong-yu, MEI Xin-yong.Design of pylon foundations for rail-cum-road cable-stayed bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45(3): 7-12. (in Chinese))
    [17]
    李军堂. 沪通长江大桥主航道桥沉井施工关键技术[J]. 桥梁建设, 2015, 45(6): 12-17.
    (LI Jun-tang.Key techniques for construction of open caissons of main ship channel bridge of hutong changjiang river bridge[J]. Bridge Construction, 2015, 45(6): 12-17. (in Chinese))
    [18]
    CECS 137: 2015 给水排水工程钢筋混凝土沉井结构设计规程[S]. 2015.
    (CECS 137: 2015 Specification for structural design of reinforced concrete sinking well of water supply and sewage engineering[S]. 2015. (in Chinese))
  • Cited by

    Periodical cited type(8)

    1. 朱俊涛,陈富翔,李德杰,曾旭涛,肖靖. 沉井-砂土界面特性及侧摩阻力分布特性试验研究. 铁道建筑. 2024(03): 59-65 .
    2. 刘桂荣. 压入式沉井施工环境效应及其影响因素分析. 绿色建筑. 2022(03): 159-164 .
    3. 陈保国,贺洁星,骆瑞萍,张光辉,高琦. 沉井下沉过程的运动学特性与下沉控制研究. 岩土力学. 2022(S2): 425-430+453 .
    4. 陈永兴,陈金浦,祝维霖,林益丰,夏海滨. 深厚软土地层圆形沉井受力性能实测. 建筑技术开发. 2021(14): 84-86 .
    5. 施洲,刘东东,纪锋,冯传宝. 超大型沉井基础的施工风险评估. 西南交通大学学报. 2021(06): 1241-1249 .
    6. 肖苡辀,吴启和,高宁波. 基于大涡模拟的圆端形沉井下沉过程水力特性研究. 中国港湾建设. 2020(08): 1-5 .
    7. 蒋炳楠,马建林,王蒙婷,李蜀南,周和祥. 超大型深水沉井下沉及渗流的离心模型试验研究. 岩土工程学报. 2020(12): 2291-2300 . 本站查看
    8. 潘亚洲,王琛,梁发云. 大型沉井下沉阻力分布特征及相关工程问题. 结构工程师. 2020(06): 134-143 .

    Other cited types(5)

Catalog

    Article views (231) PDF downloads (141) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return