• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Gui-lin, ZHANG Liang, XU Ming, LAING Zai-yong, RANG Long-bao. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639-647. DOI: 10.11779/CJGE201904006
Citation: WANG Gui-lin, ZHANG Liang, XU Ming, LAING Zai-yong, RANG Long-bao. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639-647. DOI: 10.11779/CJGE201904006

Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression

More Information
  • Received Date: April 10, 2018
  • Published Date: April 24, 2019
  • Energy accumulation and energy release appear evidently during the whole deformation process of jointed rock mass. In order to explore the energy evolution law of jointed rock mass under loading condition, the uniaxial compression experiment and the energy theory are adopted to study the characteristics of energy transformation of total energy U, elastic strain energy Ue and dissipation energy Ud, and to reveal the energy damage evolution mechanism of the jointed rock mass. Based on the change rate of ratio dissipated energy to elastic energy (dK/dε), the criteria for crack propagation and strength failure of non-across jointed rock mass are proposed. The obtained results show that the energy reserve of the rock mass is obviously weakened by the non-across joints, and the total energy and elastic strain energy at the peak point gradually decrease with the increase of the number of joints. The curves of elastic strain energy and dissipated energy of jointed rock mass distinctly appear “step shape” (abrupt decrease or increase), and the values that the elastic strain energy and dissipative energy of double pre-existing flaws abruptly increase or decrease are significantly smaller than those of single pre-existing flaw. The pre- and post-peak continuous mutation (dK/dε alternates between negative and positive) and mutations (dK/dε maintains as positive infinity) of dK/dε are regarded as the crack propagation and the strength failure criteria for the jointed rock mass.
  • [1]
    尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002, 21(6): 778-781.
    (YOU Ming-qing, HUA An-zeng.Energy analysis on failure process of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778-781. (in Chinese))
    [2]
    谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565-3570.
    (XIE He-ping, PENG Rui-dong, JU Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. (in Chinese))
    [3]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010.
    (XIE He-ping, JU Yang, LI Li-yun.Criteria for strength and structural failure of rocks based on energy dissipation and release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese))
    [4]
    谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 2005, 24(15): 2603-2608.
    (XIE He-ping, PENG Rui-dong, JU Yang, et a1. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese))
    [5]
    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报, 2008, 40(2): 26-31.
    (ZHAO Zhong-hu, XIE He-ping.Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University, 2008, 40(2): 26-31. (in Chinese))
    [6]
    周辉, 李震, 杨艳霜, 等. 岩石统一能量屈服准则[J]. 岩石力学与工程学报, 2013, 32(11): 2170-2184.
    (ZHOU Hui, LI Zhen, YANG Yan-shuang, et al.Unified energy yield criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2170-2184. (in Chinese))
    [7]
    HUA A Z, YOU M Q.Rock failure due to energy release during unloading and application to underground rock burst control[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 241-246.
    [8]
    ZHOU X P.Triaxial compressive behavior of rock with mesoscopic heterogenous behavior: Strain energy density factor approach[J]. Theoretical and Applied Fracture Mechanics, 2006, 45(1): 46-63.
    [9]
    陈旭光, 张强勇. 岩石剪切破坏过程的能量耗散和释放研究[J]. 采矿与安全工程学报, 2010, 27(2): 179-184.
    (CHEN Xu-guang, ZHAN Qiang-yong.Research on the energy dissipation and release in the process of rock shear failure[J]. Journal o f Mining & Safety Engineering, 2010, 27(2): 179-184. (in Chinese))
    [10]
    宋义敏, 姜耀东, 马少鹏, 等. 岩石变形破坏全过程的变形场和能量演化研究[J]. 岩土力学, 2012, 33(5): 1352-1365.
    (SONG Yi-min, JIANG Yao-dong, MA Shao-peng, et al.Evolution of deformation fields and energy in whole process of rock failure[J]. Rock and Soil Mechanics, 2012, 33(5): 1352-1365. (in Chinese))
    [11]
    张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2012, 31(6): 1198-1207.
    (ZHANG Zhi-zhen, GAO Feng.Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1198-1207. (in Chinese))
    [12]
    ZHANG Zhi-zhen, GAO Feng.Experimental investigation on the energy evolution of dry and water-saturated red sandstones[J]. International Journal of Mining Science and Technology, 2015, 25(3): 383-388.
    [13]
    左建平, 黄亚明, 熊国军, 等. 脆性岩石破坏的能量跌落系数研究[J]. 岩土力学, 2014, 35(2): 321-327.
    (ZUO Jian-ping, HUANG Ya-ming, XIONG Guo-jun, et al.Study of energy-drop coefficient of brittle rock failure[J]. Rock and Soil Mechanics, 2014, 35(2): 321-327. (in Chinese))
    [14]
    衡帅, 杨春和, 李芷, 等. 基于能量耗散的页岩脆性特征[J]. 中南大学学报, 2016, 47(2): 577-585.
    (HENG Shuai, YANG Chun-he, LI Zhi, et al.Shale brittleness estimation based on energy dissipation[J]. Journal of Central South University, 2016, 47(2): 577-585. (in Chinese))
    [15]
    梁昌玉, 李晓, 吴树仁. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. 岩土力学, 2016, 37(12): 3472-3480.
    (LIANG Chang-yu, LI Xiao, WU Shu-ren.Research on energy characteristics of size effect of granite under low intermediate strain rates[J]. Rock and Soil Mechanics, 2016, 37(12): 3472-3480. (in Chinese))
    [16]
    杨以荣, 谢红强, 肖明砾, 等. 高围压卸荷条件下横观各向同性岩体变形破坏与能量特征研究[J]. 岩石力学与工程学报, 2017, 36(8): 1999-2006.
    (YANG Yi-rong, XIE Hong-qiang, XIAO Ming-li, et al.Deformation failure and energy characteristics of transverse-isotropic rock under unloading of high confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 36(8): 1999-2006. (in Chinese))
    [17]
    陈子全, 何川, 吴迪, 等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学, 2016, 37(9): 1-12.
    (CHEN Zi-quan, HE Chuan, WU Di, et al.Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics, 2018, 37(9): 1-12. (in Chinese))
    [18]
    张萍, 杨春和, 汪虎, 等. 页岩单轴压缩应力-应变特征及能量各向异性[J]. 岩土力学, 2018, 39(6): 1001-1009.
    (ZHANG Ping, YANG Chun-he, WANG Hu, et al.Stress-strain characteristics and anisotropy energy of shale under uniaxial compression[J]. Rock and Soil Mechanics, 2018, 39(6): 1001-1009. (in Chinese))
    [19]
    宫凤强, 罗松, 李夕兵, 等. 红砂岩张拉破坏过程中的线性储能和耗能规律[J]. 岩石力学与工程学报, 2018, 37(2): 352-363.
    (GONG Feng-qiang, LUO Song, LI Xi-bing, et al.Linear energy storage and dissipation rule of red sandstone materials during the tensile failure process[J]. Chinese Journal of Geotechnical Engineering, 2018, 37(2): 352-363. (in Chinese))
    [20]
    刘天为, 何江达, 徐文杰. 大理岩三轴压缩破坏的能量特征分析[J]. 岩土工程学报, 2013, 35(2): 395-400.
    (LIU Tian-wei, HE Jiang-da, XU Wen-jie.Energy properties of failure of marble samples under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 395-400. (in Chinese))
    [21]
    张志镇, 高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报, 2015, 34(1): 1-11.
    (ZHANG Zhi-zhen, GAO Feng.Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1-11. (in Chinese))
    [22]
    张黎明, 高速, 王在泉, 等. 大理岩加卸荷破坏过程的能量演化特征分析[J]. 岩石力学与工程学报, 2013, 32(8): 1572-1578.
    (ZHANG Li-ming, GAO Su, WANG Zai-quan, et al.Analysis of marble failure energy evolution under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1572-1578. (in Chinese))
    [23]
    高速, 张黎明, 王在泉, 等. 大理岩卸荷破坏变形及能量特征研究[J]. 岩石力学与工程学报, 2013, 33(1): 2808-2813.
    (ZHANG Li-ming, GAO Su, WANG Zai-quan, et al.Study of deformation and energy properties of marble unloading failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 33(1): 2808-2813. (in Chinese))
    [24]
    黄达, 谭清, 黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2483-2493.
    (HUANG Da, TAN Qing, HUANG Run-qiu.Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. (in Chinese))
    [25]
    戴兵, 赵国彦, 杨晨, 等. 不同应力路径下岩石峰前卸荷破坏能量特征分析[J]. 采矿与安全工程学报, 2016, 33(2): 367-374.
    (DAI Bing, ZHAO Guo-yan, YANG Chen, et al.Energy evolution law of rocks in process of unloading failure under different paths[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 367-374. (in Chinese))
    [26]
    ZHAO Guo-yan, DAI Bing, DONG Long-jun, et al.Energy conversion of rocks in process of unloading confining pressure under different unloading paths[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1626-1632.
    [27]
    LI Di-yuan, SUN Zhi, XIE Tao, et al.Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths[J]. Engineering Geology, 2017, 228: 270-281.
    [28]
    李子运, 吴光, 黄天柱, 等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J]. 岩石力学与工程学报, 2018, 37(1): 1-9.
    (LI Zi-yun, WU Guang, HUANG Tian-zhu, et al.Research on evolution law of energy and criteria for strength failure of shale under traixial cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 1-9. (in Chinese))
    [29]
    HAWKINS A B, MCCONNELL B J.Sensitivity of sandstone strength and deformabilitu to changes in moisture content[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 1992, 25(2): 115-130.
    [30]
    SOLECKI R, CONANT R J.Advanced mechanics of materials[M]. London: Oxford University Press, 2003.
    [31]
    GB0266-2013 工程岩体实验方法标准[S]. 2013. (GB0266-2013 Experimental method and standard of engineering rock mass[S]. 2013. (in Chinese))
    [32]
    HUANG D, LI Y R.Conversion of strain energy in triaxial unloading tests on marble[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 66: 160-168.

Catalog

    Article views (488) PDF downloads (308) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return