Citation: | ZHANG Sha-sha, XIE Shan-jie, YANG Xiao-hua, CHEN Wei-zhi. Action mechanism of coarse particle sulfate soil subgrade modified by volcanic ash[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 588-594. DOI: 10.11779/CJGE201903023 |
[1] |
吕擎峰, 申贝, 王生新, 等. 水玻璃固化硫酸盐渍土强度特性及固化机制研究[J]. 岩土力学, 2016, 37(3): 687-693, 727.
(LÜ Qing-feng, SHEN Bei, WANG Sheng-xin, et al.Strength characteristics and solidification mechanism of sulphate salty soil solidified with sodium silicate[J]. Rock and Soil Mechanics, 2016, 37(3): 687-693, 727. (in Chinese)) |
[2] |
李宏波, 沈晖, 沈杰. 粉煤灰固化超盐渍土的抗剪强度及耐久性[J]. 兰州理工大学学报, 2015, 41(3): 140-144.
(LI Hong-bo, SHEN Hui, SHEN Jie.Shearing strength and durability of hypersaline soil solidified with fly ash[J]. Journal of Lanzhou University of Technology, 2015, 41(3): 140-144. (in Chinese)) |
[3] |
田汉儒, 亓振中, 秦明亮, 等. 粗颗粒盐渍土化学改良试验研究[J]. 勘察科学技术, 2016(6): 5-7, 27.
(TIAN Han-ru, QI Zhen-zhong, QING Ming-liang, et al.Experimental study on chemical improvement of coarse grained saline soil[J]. Site Investigation Science and Technology, 2016(6): 5-7, 27. (in Chinese)) |
[4] |
文桃, 米海珍, 马连生, 等. 石灰改良黄土状硫酸盐渍土强度的影响因素研究[J]. 建筑科学与工程学报, 2015, 32(2): 104-110.
(WEN Tao, MI Hai-zhen, MA Lian-sheng, et al.Research on effect factors of strength of lime-treated loessial sulfate salty soil[J]. Journal of Architecture and Civil Engineering, 2015, 32(2): 104-110. (in Chinese)) |
[5] |
HOSSAIN K M A, MOL L. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes[J]. Construction and Building Material, 2011, 25(8): 3495-3501.
|
[6] |
ABBASI N, MAHDIEH M, DAVOUDI M H.Application of lime and pozzolan for stabilization of silty sand soils in irrigation and drainage networks[J]. Journal of Science and Technology of Agriculture and Natural Resources, 2013, 16(62): 245-257.
|
[7] |
TB 10001—2016 铁路路基设计规范[S]. 2016.
(TB 10001—2016 Code for design of railway earth structure[S]. 2016. (in Chinese)) |
[8] |
TB 10102—2004 铁路工程土工试验规程[S]. 2004.
(TB 10102—2004 Test regulations for geotechnical engineering of Railway Engineering[S]. 2004. (in Chinese)) |
[9] |
GB/T 50942—2014 盐渍土地区建筑技术规范[S]. 2014.
(GB/T 50942—2014 Technical code for building in saline soil regions[S]. 2014. (in Chinese)) |
[10] |
张莎莎, 王永威, 包卫星, 等. 影响粗粒硫酸盐渍土盐胀特性的敏感因素研究[J]. 岩土工程学报, 2017, 39(5): 946-952.
(ZHANG Sha-sha, WANG Yong-wei, BAO Wei-xing, et al.Research on the sensitive parameters of embankment deformation behavior for coarse-grained sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 946-952. (in Chinese)) |
[11] |
TB10621—2014 高速铁路设计规范[S]. 2014.
(TB10621—2014 Code for design of high speed railway[S]. 2014. (in Chinese)) |
[12] |
张莎莎, 杨晓华, 张秋美. 天然粗粒盐渍土大型路堤模型试验研究[J]. 岩土工程学报, 2012, 34(5): 842-847.
(ZHANG Sha-sha, YANG Xiao-hua, ZHANG Qiu-mei.Research on large-scale embankment model test of crude coarse grained saline soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 842-847. (in Chinese)) |
[13] |
申贝. 地聚物胶凝材料固化硫酸盐渍土试验研究[D]. 兰州: 兰州大学, 2016.
(SHEN Bei.Research on sulphate salty soil reinforced by geopolymer[D]. Lanzhou: Lanzhou University, 2016. (in Chinese)) |
[1] | YANG Meng, ZHONG Qiming, LIN Zhong, LI Yu, LU Hongning. Model tests and numerical simulation of overtopping-induced breach process of asphalt concrete core dams[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1534-1540. DOI: 10.11779/CJGE20230291 |
[2] | ZHONG Qi-ming, SHEN Guang-ze. Numerical model for breach of concrete face sand-gravel dams due to overtopping[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1591-1598. DOI: 10.11779/CJGE201909002 |
[3] | SHEN Guang-ze, SHENG Jin-bao, XIANG Yan, ZHONG Qi-ming. Numerical modeling of breach process of landslide dams due to overtopping and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 82-86. DOI: 10.11779/CJGE2018S2017 |
[4] | DENG Zhao, CHEN Sheng-shui, ZHONG Qi-ming. Mathematical model for breach of tailings dam due to overtopping and its application[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 932-938. DOI: 10.11779/CJGE201705018 |
[5] | ZHAO Tian-long, CHEN Sheng-shui, WANG Jun-jie, ZHONG Qi-ming, FU Chang-jing. Centrifugal model tests overtopping failure of barrier dams[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1965-1972. DOI: 10.11779/CJGE201611005 |
[6] | CHEN Sheng-shui, FANG Xu-shun, ZHONG Qi-ming, LI Yun-hui. Centrifugal model tests and numerical simulations for break of earth-rock dams due to overtopping[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 911-931. DOI: 10.11779/CJGE201405017 |
[7] | LI Ming, ZHANG Ga, LEE C F, ZHANG Jian-min. Centrifugal model tests on excavation-induced deformation of slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 667. |
[8] | Development and application of a slope excavation device for centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10). |
[9] | YANG Junjie, LIU Qiang, LIU Fei, TOYOSAWA Y, HORII N. Discussion on error of centrifugal acceleration in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 241-246. |
[10] | ZHANG Weimin, O.KUSAKABE. Dynamic centrifuge model test of sandy layer[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 28-31. |
1. |
赵恒梓,李素敏,郭庆,王中羽. 样本优化的集成学习模型在滑坡易发性评价中的应用. 测绘科学. 2024(12): 132-141 .
![]() |