• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhi-jie, GAO Jing-yao, ZHANG Peng, GUAN Xiao, JI Xiao-feng. Stability analysis of tunnel face in high-pressure karst tunnels based on catastrophe theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 95-103. DOI: 10.11779/CJGE201901010
Citation: WANG Zhi-jie, GAO Jing-yao, ZHANG Peng, GUAN Xiao, JI Xiao-feng. Stability analysis of tunnel face in high-pressure karst tunnels based on catastrophe theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 95-103. DOI: 10.11779/CJGE201901010

Stability analysis of tunnel face in high-pressure karst tunnels based on catastrophe theory

More Information
  • Received Date: December 13, 2017
  • Published Date: January 24, 2019
  • In order to study the bearing capacity and failure mode of the intermediate rock wall in the presence of orthogonal high-pressure caverns in front of horseshoe tunnels, a frustum model for the instability of tunnel face is established considering the influences of the location and size of the cavern on the stability of the intermediate rock wall. Based on the cusp catastrophe theory of the potential energy criterion, the critical pressure can be predicted. At the same time, similar model tests are conducted to reveal the destruction characteristics of the intermediate rock wall when the high-pressure cavern are intersected with the tunnel. The failure model for the tunnel face is additionally verified. The results show that the critical pressure of karst cavern increases with the thickness of the intermediate rock wall and the grade of the surrounding rock and decreases with the increase of the size of karst cavern. The change of the elastic modulus of the rock has a significant effect on the stability of the intermediate rock. When the thickness of the intermediate rock wall exceeds 0.35 times the hole diameter, the cavern is not the main factor causing the failure of the face. The pressure spread angle θ is introduced to describe the destruction pattern of the intermediate rock wall when the cavern and the tunnel are in different orthogonal positions, and founds that the critical pressure of the cave is positively correlated with the curvature of the tunnel boundary near the side of the cavern. The results of the proposed model are basically consistent with the test ones, which can provide reference for the design and construction of high-pressure karst tunnels.
  • [1]
    周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(3): 818-826.
    (ZHOU Zong-qing, LI Shu-cai, LI Li-ping, et al.Attribute recognition model of fatalness assessment of water inrush in karst tunnels and its application[J]. Rock and Soil Mechanics, 2013, 34(3): 818-826. (in Chinese))
    [2]
    王遇国. 岩溶隧道突水灾害与防治研究[D]. 北京: 中国铁道科学研究院, 2010.
    (WANG Yu-guo.Study on scourge and prevention of karst tunnel water inrush[D]. Beijing: China Academy of Railway Sciences, 2010. (in Chinese))
    [3]
    康勇, 杨春和, 张朋. 浅埋岩溶隧道灾变机制及其防治[J]. 岩石力学与工程学报, 2010, 29(1): 149-154.
    (KANG Yong, YANG Chun-he, ZHANG Peng.Disaster induced mechanism and its treatment in shallow-buried karst tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 149-154. (in Chinese) )
    [4]
    张庆松, 李术才, 韩宏伟, 等. 岩溶隧道施工风险评价与突水灾害防治技术研究[J]. 山东大学学报(工学版), 2009, 39(3): 106-110.
    (ZHANG Qin-song, LI Shu-cai, HAN Hong-wei, et al.Study on risk evaluation and water inrush disaster preventing technology during construction of karst tunnels[J]. Journal of Shandong University(Engineering Science), 2009, 39(3): 106-110. (in Chinese))
    [5]
    赵明阶, 敖建华, 刘绪华, 等. 岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J]. 岩石力学与工程学报, 2004, 23(2): 213-217.
    (ZHAO Ming-jie, AO Jian-hua, LIU Xu-hua, et al.Model testing research on influence of karst cave sizeon stability of surrounding rockmasses during tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 213-217. (in Chinese))
    [6]
    郭佳奇, 乔春生. 岩溶隧道掌子面突水机制及岩墙安全厚度研究[J]. 铁道学报, 2012, 34(3): 105-111.
    (GUO Jiao-qi, QIAO Chun-sheng.Study on water inrush mechanism and safe thickness of rock wall of karst tunnel face[J]. Journal of the China Railway Society, 2012, 34(3): 105-111. (in Chinese))
    [7]
    郭佳奇, 乔春生, 曹茜. 侧部高压富水溶洞与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010, 47(6): 10-16.
    (GUO Jia-qi, QIAO Chun-shen, CAO Qian.Study on safe thickness of rock wall between high pressure water cave and tunnel[J]. Modern Tunnelling Technology, 2010, 47(6): 10-16. (in Chinese))
    [8]
    莫阳春. 高水压充填型岩溶隧道稳定性研究[D]. 成都: 西南交通大学, 2009.
    (MO Yang-chun.Stability research on high water pressure filled karst caves tunnel[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [9]
    宋战平, 綦彦波, 李宁. 顶部既有隐伏溶洞对圆形隧道稳定性影响的数值分析[J]. 岩土力学, 2007, 28(增刊1): 485-489.
    (SONG Zhan-ping, QI Yan-bo, LI Ning.Numerical experimentational research on concealed karst cave’s influence on circular tunnel stability[J]. Rock and Soil Mechanics, 2007, 28(S1): 485-489. (in Chinese))
    [10]
    宋战平. 隐伏溶洞对隧道围岩支护结构稳定性的影响研究[D]. 西安: 西安理工大学, 2006.
    (SONG Zhan-ping.Research on the influence of concealed karst caverns upon the stability of tunnel and its support structure[D]. Xi'an: Xi'an University of Technology, 2006. (in Chinese))
    [11]
    孙谋, 刘维宁. 高风险岩溶隧道掌子面突水机制研究[J]. 岩土力学, 2011, 32(4): 1175-1180.
    (SUN Mou, LIU Wei-ning.Research on water inrush mechanism induced by karst tunnel face with high risk[J]. Rock and Soil Mechanics, 2011, 32(4): 1175-1180. (in Chinese))
    [12]
    姜德义, 任松, 刘新荣, 等. 岩盐溶洞顶板稳定性突变理论分析[J]. 岩土力学, 2005, 26(7): 1099-1103.
    (JIANG De-yi, REN Song, LIU Xin-rong, et al.Stability analysis of rock salt cavern with catastrophe theory[J]. Rock and Soil Mechanics, 2005, 26(7): 1099-1103. (in Chinese))
    [13]
    潘东东, 李术才, 许振浩, 等. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 40(5): 826-836.
    (PAN Dong-dong, LI Shu-cai, XU Zhen-hao, et al.A model test and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 826-836. (in Chinese))
    [14]
    李术才, 袁永才, 李利平, 等. 钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J]. 岩土工程学报, 2015, 37(2): 313-320.
    (LI Shu-cai, YUAN Yong-cai, LI Li-ping, et al.Water inrush mechanism and minimum safe thickness of rock wall of karst tunnel face under blast excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 313-320. (in Chinese))
    [15]
    赵明华, 蒋冲, 曹文贵. 岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J]. 岩土工程学报, 2007, 29(11): 1618-1622.
    (ZHAO Ming-hua, JIANG Chong, CAO Wen-gui.Study on bearing capacity of rock-socked piles and safe thickness of cave roofs in karst region[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1618-1622. (in Chinese))
    [16]
    付成华, 陈胜宏. 基于突变理论的地下工程洞室围岩失稳判据研究[J]. 岩土力学, 2008, 29(1): 167-172.
    (FU Cheng-hua, CHEN Sheng-hong.Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory rock and soil mechanics[J]. Rock and Soil Mechanics, 2008, 29(1): 167-172. (in Chinese))
    [17]
    何平, 赵子都. 突变理论及其应用[M]. 大连: 大连理工大学出版社, 1989.
    (HE Ping, ZHAO Zi-du.Mutation theory and its application[M]. Dalian: Dalian University of Technology Press, 1989. (in Chinese))
    [18]
    袁文忠. 相似理论与静力学模型试验[M]. 成都: 西南交通大学出版社, 1998.
    (YUAN Wen-zhong.Similar theoryand statics model test[M]. Chengdu: Southwest Jiaotong University Press, 1998. (in Chinese))
    [19]
    雷勇, 尹君凡, 陈秋南, 等. 基于极限分析法的溶洞顶板极限承载力研究[J]. 岩土力学, 2017, 38(7): 1926-1932.
    (LEI Yong, YIN Jun-fan, CHEN Qiu-nan, et al.Determination of ultimate bearing capacity of cave roof using limit analysis method[J]. Rock and Soil Mechanics, 2017, 38(7): 1926-1932. (in Chinese))
    [20]
    杨子汉, 杨小礼, 许敬叔, 等. 基于上限原理的两种岩溶隧道岩墙厚度计算方法[J]. 岩土力学, 2017, 38(3): 801-809.
    (YANG Zi-han, YANG Xiao-li, XU Jing-shu, et al.Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem[J]. Rock and Soil Mechanics, 2017, 38(3): 801-809. (in Chinese))
  • Cited by

    Periodical cited type(18)

    1. 苏凯,杨逢杰,龚睿,朱洪泽. 穿越岩溶地区隧洞施工开挖防渗措施研究. 中国农村水利水电. 2024(05): 215-220+225 .
    2. 张江涛,柴正富,蒲振华,江杰,甘雨. 跨管状垂直落水溶洞隧道施工变形分析及加固措施. 公路工程. 2024(05): 8-16+33 .
    3. 王圣涛,张俊儒,彭波,燕波. 拱隧一体结构跨越巨型溶洞段处治技术研究. 现代隧道技术. 2024(05): 263-273 .
    4. 孙克国,甄映州,魏勇,肖支飞,杨朋,方纯彬,蔡定淮,刘广明. 富水岩溶区基坑稳定性影响规律与分析. 现代隧道技术. 2023(01): 149-158+194 .
    5. 黄城,刘远明,袁侨蔚,欧洵. 基于强度理论的隧道与溶洞间安全距离计算. 中国水运. 2023(03): 143-145 .
    6. 周科,李成强,张玉广. 山区陡坡路堤滑坡失稳分析. 中国水运. 2023(05): 158-160 .
    7. 王祥,陈发达,吴贤国,冯宗宝,陈虹宇. 基于云模型和D-S证据理论的岩溶盾构隧道掌子面稳定性评价. 工业建筑. 2023(11): 65-72 .
    8. 叶雄,余浩,王桂林,龚晟. 穿煤隧道层面性质对岩柱安全厚度的影响研究. 地下空间与工程学报. 2023(S2): 926-933 .
    9. 杨曦,赵智辉,刘跃成,周创,康跃明,范明外. 双隧道开挖进尺对其掌子面稳定现场监测和数值分析——以安石隧道为例. 科技和产业. 2022(01): 357-362 .
    10. 孙希波,刘宏翔,李鹏飞,郭彩霞. 隧道穿越富水断层隔水岩体冲切剪切破坏研究. 隧道建设(中英文). 2022(06): 984-993 .
    11. 寇小勇,樊浩博,李芒原,郎志军,张家奎,高新强,郜现磊,朱正国. 富水岩溶隧道掌子面安全岩柱厚度研究. 科学技术与工程. 2022(24): 10706-10717 .
    12. 房忠栋,杨为民,王旌,石锦江,巴兴之,王浩. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究. 中南大学学报(自然科学版). 2021(08): 2805-2816 .
    13. 周平,王志杰,侯伟名,周飞聪,杜彦良,冯冀蒙,徐海岩. 昔格达地层隧道局部浸湿失稳特征及突变预测研究. 岩土工程学报. 2020(03): 503-512 . 本站查看
    14. 梅卫锋,黎浩. 考虑岩墙厚度的大断面隧道掌子面稳定性分析. 公路工程. 2020(02): 200-206 .
    15. 陈峥,何平,颜杜民,高红杰,聂奥祥. 超前支护下隧道掌子面稳定性极限上限分析. 岩土力学. 2019(06): 2154-2162 .
    16. 杨松,彭忠举,欧阳汛,艾祖斌,曹振生,陈全胜,周浩. 基于个旧组地质的长大隧道施工技术经济评价. 价值工程. 2019(21): 126-128 .
    17. 王成洋,傅鹤林,张佳华. 非饱和浅埋隧道稳定性的上限分析. 采矿与安全工程学报. 2019(06): 1161-1167 .
    18. 杨松,彭忠举,欧阳汛. 基于个旧组岩溶地质的长大隧道施工要点研究. 交通节能与环保. 2019(06): 115-118 .

    Other cited types(19)

Catalog

    Article views (298) PDF downloads (252) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return