• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Chun-lei, ZHANG Ding-li, FANG Qian, HOU Yan-juan. Research on diaphragm wall mechanism and effect of deformation control in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2087-2095. DOI: 10.11779/CJGE201811015
Citation: FENG Chun-lei, ZHANG Ding-li, FANG Qian, HOU Yan-juan. Research on diaphragm wall mechanism and effect of deformation control in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2087-2095. DOI: 10.11779/CJGE201811015

Research on diaphragm wall mechanism and effect of deformation control in soft soil

More Information
  • Received Date: November 26, 2017
  • Published Date: November 24, 2018
  • On the basis of measured data from 20 subway station foundation pits in Tianjin, a normalized model is established and the affection of the distance between diaphragm wall and retaining structure(L), the stiffness(E)and the depth of diaphragm wall(H) which may influence the internal forces (MD) and horizontal displacement (δhm) of the containment structure and the surface subsidence (δvm), are studied by using the finite element method and orthogonal test. And it turns out that the three factors influence the deformation control of foundation pit in varying degrees. L primarily affects MD and δvm, and the maximum settlement can be reduced by more than 60%. And H mainly controls δhm, to the greatest extent, the lateral displacement can be reduced by about 50%. But the impact of E is not obvious within the range of normal variation. Then according to the computation theory for the similar structure of double row pile, the quantitative relationship of internal forces between diaphragm wall and containment structure is established. Finally, the applicability of the above conclusions to the deformation control and prediction of foundation pit in soft soil is verified by using the deformation prediction of Kung et al. to analyses the control effect of diaphragm wall in soft soil area, and by comparing with the measured value with the result of the finite element calculation.
  • [1]
    刘国彬, 王卫东. 基坑工程手册[M]. 北京: 中国建筑工业出版社,2009.
    (LIU Guo-bin, WANG Wei-dong.Handbook for foundation pit engineering[M]. Beijing: China Architecture and Building Press, 2009. (in Chinese))
    [2]
    项彦勇, 贺少辉, 张弥, 等. 导洞隔离桩墙结构对浅埋暗挖隧道周边地层移动的限制作用[J]. 岩石力学与工程学, 2004, 23(19): 3317-3323.
    (XIANG Yan-yong, HE Shao-hui, ZHANG Mi, et al.Constraint effect of pilot-drift and separation-pile structure on ground movements induced by shallow tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3317-3323. (in Chinese))
    [3]
    姚海波, 王梦恕, 张顶立, 等. 导洞-隔离桩体系工作机制研究与侧向变形分析[J]. 土木工程学报, 2006, 39(4): 105-109.
    (YAO Hai-bo, WANG Meng-shu, ZHANG Ding-li, et al.Mechanism of a drift-pile system and analysis of its horizontal displacement[J]. China Civil Engineering Journal, 2006, 39(4): 105-109. (in Chinese))
    [4]
    费纬. 隔离桩在紧邻浅基础建筑的深基坑工程变形控制中的应用[J]. 岩土工程学报, 2010, 32(增刊1): 265-270.
    (FEI Wei.Application of isolation piles to deformation control of deep foundation pits close to buildings with shallow foundation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 265-270. (in Chinese))
    [5]
    翟杰群, 贾坚, 谢小林. 隔离桩在深基坑开挖保护相邻建筑中的应用[J]. 地下空间与工程学报, 2010, 6(1): 162-166.
    (ZHAI Jie-qun, JIA Jian, XIE Xiao-lin.Practice of partition wall in the building protection projects near deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 162-166. (in Chinese))
    [6]
    应宏伟, 李涛, 杨永文, 等. 深基坑隔断墙保护邻近建筑物的效果与工程应用分析[J]. 岩土工程学报, 2011, 33(7): 1123-1129.
    (YING Hong-wei, LI Tao, YANG Yong-wen, et al.Effect and application of partition walls in protecting adjacent buildings from deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1123-1129. (in Chinese))
    [7]
    应宏伟, 李涛, 王文芳. 基于三维数值模拟的深基坑隔断墙优化设计[J]. 岩土力学, 2012, 33(1): 220-226.
    (YING Hong-wei, LI Tao, WANG Wen-fang.Optimization design of partition wall in deep excavations based on 3-D numerical simulation[J]. Rock and Soil Mechanics, 2012, 33(1): 220-226. (in Chinese))
    [8]
    BILOTTA E, RUSSO G.Use of a line of piles to prevent damages induced by tunnel excavation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2011, 137(3): 254-262.
    [9]
    DI M A, GESTO J M, GENS A, et al.Ground deformation and mitigating measures associated with the excavation of a new Metro line[M]// Geotechnical Engineering in Urban Environments. Rotterdam: Millpress Science, 2007: 1901-1906.
    [10]
    纪新博, 赵文, 李慎刚, 等. 隔离桩在隧道侧穿邻近浅基建筑中的应用[J]. 东北大学学报(自然科学版), 2013, 34(1): 135-139.
    (JI Xin-bo, ZHAO Wen, LI Shen-gang, et al.Application of isolation piles on metro tunnel for side-crossing the buildings with shallow foundation[J]. Journal of Northeastern University (Natural Science), 2013, 34(1): 135-139. (in Chinese))
    [11]
    闫静雅. 桩基础全寿命期对邻近已有隧道的影响研究[D]. 上海: 同济大学, 2007.
    (YAN Jing-ya.The influence of pile foundation in life-cycle on adjacent existing tunnel[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [12]
    郑刚, 杜一鸣, 刁钰. 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3499-3509.
    (ZHENG Gang, DU Yi-ming, DIAO Yu.Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3499-3509. (in Chinese))
    [13]
    葛明. 天津软土地区地铁基坑开挖变形规律及影响因素研究[D]. 北京: 北京交通大学, 2016.
    (GE Ming.Study on deformation law and influencing factors of foundation fit excavation in soft soil area of Tianjin[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese))
    [14]
    郑刚, 焦莹. 深基坑工程设计理论及工程应用[M]. 北京: 中国建筑工业出版社, 2010.
    (ZHENG Gang, JIAO Ying.Deep foundation pit engineering design theory and engineering application[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese))
    [15]
    BURLAND J B.‘Small is beautiful’: the stiffness of soils at small strains[J]. Ninth Laurits Bjerrum Memorial Lecture, Canadian Geotechnical Journal, 1989, 26(4): 499-516.
    [16]
    BENZ T.Small strain stiffness of soils and its numerical consequences[D]. Stuttgart: Institute of Geotechnical Engineering, University of Stuttgart, 2007.
    [17]
    欧章煜. 深开挖工程分析设计理论与实务[M]. 台北: 科技图书股份有限公司, 2002.
    (OU Zhang-yu.Analysis and design theory and practice of deep excavation engineering[M]. Taipei: Science and Technology Books Co. Ltd, 2002. (in Chinese))
    [18]
    潘延连. 双排桩支护结构的计算理论研究及数值模拟[D].昆明: 昆明理工大学, 2013.
    (TPAN Yan-lian.Heoretical analysis and numericial calculation of retaining structure with double-row piles[D]. Kunming: Kunming University of Science and Technology, 2013. (in Chinese))
    [19]
    KUNG G T, JUANG C H, HSIAO E C, et al.Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(6): 731-747.
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return