• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Cheng-cheng, SHI Bin, LIU Su-ping, GU Kai, ZHANG Lei, WEI Guang-qing. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967. DOI: 10.11779/CJGE201811001
Citation: ZHANG Cheng-cheng, SHI Bin, LIU Su-ping, GU Kai, ZHANG Lei, WEI Guang-qing. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959-1967. DOI: 10.11779/CJGE201811001

Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable

More Information
  • Received Date: August 28, 2017
  • Published Date: November 24, 2018
  • The mechanical coupling between borehole backfill and fiber-optic strain-sensing cable is the key factor affecting distributed fiber-optic sensing (DFOS)-based land subsidence monitoring. A new pullout apparatus is designed to investigate the interaction mechanism between cable and soil under confining pressures (CPs) ranging from 0 to 1.6 MPa. The test results and analytical analyses show that the cable-soil interface fails progressively under pullout conditions. Under low CPs, the axial strain increases and propagates toward the cable toe under increasing pullout displacements. In contrast, the propagation of strain is restrained around the cable head under high CPs. The ideal elasto-plastic pullout model can reasonably describe the progressive failure behavior of the cable-soil interface. A new coefficient is proposed to characterize the cable-soil mechanical coupling for long-term monitoring purposes (the maximum axial strain of 10000με), together with a classification of the mechanical coupling based on this coefficient. The case of the Shengze land subsidence in Suzhou of China is presented to illustrate how these findings can be applied to the field. The analyses demonstrate the strong coupling of the cable to the borehole backfill below a depth of 16 m. It may provide a sound basis for monitoring land subsidence using the DFOS technique.
  • [1]
    薛禹群, 张云, 叶淑君, 等. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究, 2003, 23(6): 585-593.
    (XUE Yu-qun, ZHANG Yun, YE Shu-jun, et al.Land subsidence in China and its problems[J]. Quaternary Sciences, 2003, 23(6): 585-593. (in Chinese))
    [2]
    AMELUNG F, GALLOWAY D L, BELL J W, et al.Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486.
    [3]
    叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报, 2005, 27(2): 140-147.
    (YE Shu-jun, XUE Yu-qun, ZHANG Yun, et al.Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 140-147. (in Chinese))
    [4]
    刘杰, 施斌, 张丹, 等. 基于BOTDR的基坑变形分布式监测实验研究[J]. 岩土力学, 2006, 27(7): 1224-1229.
    (LIU Jie, SHI Bin, ZHANG Dan, et al.Experimental study of foundation pit monitoring using BOTDR-based on distributed optical fiber sensor[J]. Rock and Soil Mechanics, 2006, 27(7): 1224-1229. (in Chinese))
    [5]
    MOORE J R, GISCHIG V, BUTTON E, et al.Rockslide deformation monitoring with fiber optic strain sensors[J]. Natural Hazards & Earth System Sciences, 2010, 10(2): 191-201.
    [6]
    MOHAMAD H, SOGA K, BENNETT P J, et al.Monitoring twin tunnel interaction using distributed optical fiber strain measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(8): 957-967.
    [7]
    WU J, JIANG H, SU J, et al.Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 587-597.
    [8]
    GALLOWAY D, JONES D R, INGEBRITSEN S E.Land subsidence in the United States[M]. Denver: US Geological Survey Circular 1182, 1999.
    [9]
    ZHANG C C, ZHU H H, LIU S P, et al.A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234: 83-96.
    [10]
    管振德, 蒋小珍, 高明. 岩溶塌陷光纤传感试验装置的标定试验[J]. 中国岩溶, 2012, 31(2): 173-178.
    (GUAN Zhen-de, JIANG Xiao-zhen, GAO Ming.A calibration test on optical fiber sensing device for karst collapse monitoring[J]. Carsologica Sinica, 2012, 31(2): 173-178. (in Chinese))
    [11]
    ITEN M.Novel applications of distributed fiber-optic sensing in geotechnical engineering[D]. Zurich: Swiss Federal Institute of Technology in Zurich, 2011.
    [12]
    ZHANG C C, ZHU H H, SHI B, et al.Interfacial characterization of soil-embedded optical fiber for ground deformation measurement[J]. Smart Materials and Structures, 2014, 23(9): 095022.
    [13]
    佘骏宽, 朱鸿鹄, 张诚成, 等. 传感光纤-砂土界面力学性质的试验研究[J]. 工程地质学报, 2014, 22(5): 855-860.
    (SHE Jun-kuan, ZHU Hong-hu, ZHANG Cheng-cheng, et al.Experiment study on mechanical properties of interface between sensing optical fiber and sand[J]. Journal of Engineering Geology, 2014, 22(5): 855-860. (in Chinese))
    [14]
    ZHANG C C, ZHU H H, SHI B.Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement[J]. Scientific Reports, 2016, 6: 36469.
    [15]
    DAS B M.Principles of geotechnical engineering[M]. 7 ed. Stamford: Cengage Learning, 2010.
  • Cited by

    Periodical cited type(24)

    1. 许时昂,张平松,程刚,吴海波,张涛. 砂土压缩变形传感光缆耦合试验分析与预测模型研究. 岩土力学. 2024(05): 1570-1582 .
    2. 张敏捷,李佳康,张峰,裴华富. 基于OFDR技术的分布式光纤–砂土界面耦合性试验与评价模型研究. 岩石力学与工程学报. 2024(S1): 3557-3567 .
    3. 尚福磊,连继峰,李晓宁,刘宇,雷智捷,胡耀中. 基于均值抽样原理的砂土颗粒级配图像分析方法. 计量学报. 2024(11): 1642-1653 .
    4. 曹凯,吴建宁,卢渊,庞小龙,贺志华,于晓清,王玄. 煤矿采空区覆岩破裂分布式声波传感监测. 地质科技通报. 2024(06): 125-135 .
    5. 刘威,朱鸿鹄,王涛,程刚. 基于分布式声波传感的大地探测技术研究进展. 地质科技通报. 2023(01): 29-41 .
    6. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    7. 李磊,侯晨,朱万成,杨柳君. 基于OFDR技术的胶结充填体内部应变演化试验. 东北大学学报(自然科学版). 2023(02): 258-264 .
    8. 孙世国,于磊. 高边坡变形光纤监测应用现状及发展趋势分析. 现代矿业. 2023(03): 10-13 .
    9. 刘威,朱鸿鹄,张汉羽,王涛,于大勇,李杰,施斌. 基于分布式声波传感阵列的地震动事件定位可行性研究. 中南大学学报(自然科学版). 2023(05): 1804-1813 .
    10. 刘昊,徐良骥,刘潇鹏,付翔,陈秋影. 基于分布式光纤的矿区非采动沉降规律研究. 安徽理工大学学报(自然科学版). 2023(04): 46-53 .
    11. 徐良骥,曹宗友,刘潇鹏,张坤,刘永琪. 基于分布式光纤的松散含水层失水沉降规律研究. 煤炭科学技术. 2023(10): 231-241 .
    12. 张平松,孙斌杨,许时昂,吴荣新,付茂如,甘圣丰,刘畅. 煤系上覆地层移动变形钻孔多参数监测技术. 煤炭学报. 2022(08): 2907-2922 .
    13. 何健辉,张进才,陈勇,闫星光,施斌,魏广庆,贾立翔,刘苏平. 基于弱光栅技术的地面沉降自动化监测系统. 水文地质工程地质. 2021(01): 146-153 .
    14. 唐春兰,胡晓容. 分布式光纤应变传感网络拓扑结构模型优化方法. 激光杂志. 2021(05): 120-124 .
    15. 向伏林,杨天亮,顾凯,施斌,刘春,刘苏平,张诚成,姜月华. 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟. 岩土力学. 2021(06): 1743-1754 .
    16. 何斌,何宁,许滨华,蔡忍,邵翰林,张启灵. 混凝土面板堆石坝面板挠度分布式监测试验. 岩土工程学报. 2020(05): 837-844 . 本站查看
    17. 柴敬,欧阳一博,张丁丁,雷武林. 采场覆岩变形分布式光纤监测岩体-光纤耦合性分析. 采矿与岩层控制工程学报. 2020(03): 73-82 .
    18. 李超,肖景泽,何静,蔡向民,刘予. 北京通州某地浅部松散层压缩变形BOTDR监测分析. 岩土工程技术. 2020(03): 130-134 .
    19. 吴涵,朱鸿鹄,周谷宇,施斌,苏立君. 考虑变形协调的土体剪切位移分布式测试研究. 工程地质学报. 2020(04): 716-724 .
    20. 张磊,施斌,魏广庆. 基于BOTDA的削坡作用下边坡破坏过程模型试验研究. 防灾减灾工程学报. 2020(05): 698-705 .
    21. 张诚成,施斌,朱鸿鹄,魏广庆. 地面沉降分布式光纤监测土–缆耦合性分析. 岩土工程学报. 2019(09): 1670-1678 . 本站查看
    22. 蒋娜,吴静红,刘浩,施斌,刘苏平,魏广庆. 锚固增强传感光缆-土体耦合性的试验研究. 中国激光. 2019(11): 299-307 .
    23. 张诚成,施斌,朱鸿鹄,唐朝生. 分布式光纤探测地裂缝的理论基础探讨. 工程地质学报. 2019(06): 1473-1482 .
    24. 张松,施斌,张诚成,刘苏平,顾凯,张磊. 低围压下锚固点应变传感光缆与土体变形耦合性试验研究. 工程地质学报. 2019(06): 1456-1463 .

    Other cited types(11)

Catalog

    Article views (305) PDF downloads (197) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return