• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, MEI Jin-ling. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023
Citation: ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, MEI Jin-ling. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023

Application of interception and drainage anti-floating system in treatment of uplift accidents

More Information
  • Received Date: March 06, 2017
  • Published Date: September 24, 2018
  • It is very complicated to deal with the uplift accidents of underground structures, because the reconstruction of uplift piles or anchors will damage the wide range of bottom slabs, while draining water blindly to relieve pressure may have a bad impact on the environment. The interception and drainage anti-floating system is a good solution to deal with these uplift accidents. The concept of this system is to intercept and drain water by use of the cutoff wall around the underground structures to form a relatively closed seepage environment and several relief wells on the bottom slab. This system can discharge water automatically with the help of controlling and monitoring equipments. The hydraulic gradient around the relief well decreases dramatically due to the adoption of a large well diameter that offers convenience to the later cleaning and maintenance work, which eliminates the hydraulic condition of well clogging. The relief well consists of several prefabricated non-fines concrete well rings installed by crane, so the construction process is very simple. This system has been successfully applied to the treatment of the uplift accident of an underground garage. The monitoring results show that the flow rate and hydraulic head can be controlled, and the operating cost is low.
  • [1]
    梅国雄, 宋林辉, 周峰, 等. 关于基础抗浮的若干问题探讨[J]. 岩土工程学报, 2008, 30(增刊1): 238-242.
    (MEI Guo-xiong, SONG Lin-hui, ZHOU Feng, et al.Discussions on several problems about anti-uplift of foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 238-242. (in Chinese))
    [2]
    张在明, 沈小克, 周宏磊, 等. 国家大剧院工程中的几个岩土工程问题[J]. 土木工程学报, 2009, 42(1): 60-65.
    (ZHANG Zai-ming, SHEN Xiao-ke, ZHOU Hong-lei, et al.Geotechnical aspects of the national centre for the performing arts[J]. China Civil Engineering Journal, 2009, 42(1): 60-65. (in Chinese))
    [3]
    Design, construction, and maintenance of relief wells[M]. US Army Corps of Engineers (USACE). Design, Construction, and Maintenance of relief wells[S]. Washington, D C: EM1110-2-1914 1992.
    [4]
    MANSUR C I, POSTOL G, SALLEY J R.Performance of relief well systems along Mississippi river levees[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 727-738.
    [5]
    张家发, 吴志广, 许季军, 等. 安庆江堤现有减压井运行效果初步分析[J]. 长江科学院院报, 2000, 17(4): 38-40.
    (ZHANG Jia-fa, WU Zhi-guang, XU Ji-jun, et al.Analyses on effectiveness of relief wells for Anqing Dyke[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(4): 38-40. (in Chinese))
    [6]
    VAN BEEK C G E M. Restoring well yield in the Netherlands[J]. Journal American Water Works Association, 1984, 76(10): 66-72.
    [7]
    曹洪, 潘泓, 尹小玲, 等. 保利世界贸易中心地下水渗流及地下室抗浮分析[R]. 广州: 华南理工大学, 2007.
    (CAO Hong, PAN Hong, YIN Xiao-ling, et al.Basement anti-floating design and seepage anslysis for poly world trade centre[R]. Guangzhou: South China University of Technology, 2007. (in Chinese))
    [8]
    曹洪, 潘泓, 骆冠勇. 地下结构截排减压抗浮概念及应用[J]. 岩石力学与工程学报, 2016, 35(12): 2542-2548.
    (CAO Hong, PAN Hong, LUO Guan-yong.A new anti-floatation method by drainage: concept and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2542-2548. (in Chinese))
    [9]
    吴昌瑜, 张伟, 李思慎, 等. 减压井机械淤堵机制与防治方法实验研究[J]. 岩土力学, 2009, 30(10): 3181-3186.
    (WU Chang-yu, ZHANG Wei, LI Si-shen, et al.Research on mechanical clogging mechanism of relief well and its control method[J]. Rock and Soil Mechanics, 2009, 30(10): 3181-3186. (in Chinese))
    [10]
    刘杰, 罗玉再. 高土石坝心墙裂缝的自愈机理与反滤层的防护作用[J]. 水利学报, 1987, 7(3): 20-29.
    (LIU Jie, LUO Yu-zai.The mechanism of crack healing in core and the protective functions of filters in high earth-rock dams[J]. Journal of Hydraulic Engineering, 1987, 7(3): 20-29. (in Chinese))
    [11]
    毛昶熙. 渗流计算分析与控制[M]. 2版. 北京: 中国水利水电出版社, 2003.
    (MAO Chang-xi.Seepage computation analysis & control[M]. 2nd ed. Beijing: China Water & Power Press, 2003. (in Chinese))
    [12]
    毛昶熙, 段祥宝, 吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. 岩土力学, 2009, 30(12): 3705-3709.
    (MAO Chang-xi, DUAN Xiang-bao, WU Liang-ji.Study of critical gradient of piping for various grain sizes in sandy gravels[J]. Rock and Soil Mechanics, 2009, 30(12): 3705-3709. (in Chinese))
    [13]
    毛昶熙. 管涌与滤层的研究:管涌部分[J]. 岩土力学, 2005, 26(2): 209-215.
    (MAO Chang-xi.Study on piping and filters: piping[J]. Rock and Soil Mechanics, 2005, 26(2): 209-215. (in Chinese))
  • Related Articles

    [1]LI Li, LIU Zi-ru. Method for lateral forces in stability analysis of concave slopes in plan view[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 137-141. DOI: 10.11779/CJGE2018S2028
    [2]QIN Zhong-guo, ZHANG Xiang-yang. New method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 946-951. DOI: 10.11779/CJGE201605022
    [3]CAO Ping, LIU Di-xu. Application of improved CSMR method to opencast mining slopes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1544-1548. DOI: 10.11779/CJGE201508027
    [4]LEI Guo-hui, ZHENG Qiang. Issues on concepts of effective stress and seepage force arising from anatomizing Swedish slice method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 667-676.
    [5]WANG Hongbo, SHAO Longtan, XIONG Baolin. Improved method to determine parameters n and hs of a hypoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1173-1176.
    [6]ZHANG Qianfei, WU Zhongru. The improved cut-off negative pressure method for unsteady seepage flow with free surface[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 48-54.
    [7]SHI Weimin, ZHENG Yingren, TANG Boming, ZHANG Luyu. Accuracy and application range of Imbalance Thrust Force Method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 313-317.
    [8]WANG Jianfeng. An analytical method of the stabilizing force of piles for landslide control using Janbu’s generalized procedure of slices[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 455-458.
    [9]Wang Zhiyin, Li Yunpeng. Some improvements in the numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 36-39.
    [10]Zhang Xiong. lmProved Slice Method for Slope Stability Analysis[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 84-92.

Catalog

    Article views (289) PDF downloads (156) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return