• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015
Citation: ZHANG Wen-jie, CHEN Lu, YAN Hong-gang. Water retention characteristics and pore size distribution of landfilled municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1491-1497. DOI: 10.11779/CJGE201808015

Water retention characteristics and pore size distribution of landfilled municipal solid waste

More Information
  • Received Date: July 20, 2017
  • Published Date: August 24, 2018
  • The soil-water characteristic curve (SWCC) is usually used to describe the relation between water content and matric suction, and to some extent the pore distribution. However, the data at low matric suction are difficult to achieve by using the pressure plate extractor because of the macropore characteristic of municipal solid waste. The SWCCs corresponding to small pores are measured by the pressure plate extractor, and those corresponding to large pores are determined by means of the water breakthrough curves, in which the Poiseuille equation and Young-Laplace equation are used to calculate the pore radius. Based on the dual-porosity feature of landfilled waste, a SWCC equation is proposed by modifying the Van Genuchten equation. The pore-size distribution of landfilled waste is investigated. The results show that the modified equation can describe the water retention characteristics and the features of pores of landfilled waste very well. The saturated and residual water content of the municipal solid waste is high. The field capacity of shallow, middle and deep waste is 38.5%, 42.2% and 46.8%, respectively, corresponding to a matric suction range of 3~8 kPa. As the depth and age increase, the effective water content interval and specific yield decrease. Taking the matric suction of 1 kPa as the limit, the pores in waste can be devided into macropores and micropores. The probability density function of pore radius is bimodal. As the depth and age increase, the amount of macropores and their radiis decrease, at the same time, the amount of micropores increases and the average pore size becomes smaller.
  • [1]
    CJJ176—2011生活垃圾卫生填埋场岩土工程技术规范[S]. 2011. (CJJ176—2011 Technical code for geotechnical engineering of municipal solid waste sanitary landfills[S]. 2011. (in Chinese))
    [2]
    KAZIMOGLU Y K, MCDOUGALL J, PYRAH I.Unsaturated hydraulic conductivity of landfilled waste[J]. International Conference on Unsaturated Soils, 2006, 79(2): 1525-1534.
    [3]
    魏海云, 詹良通, 陈云敏. 城市生活垃圾持水曲线的试验研究[J]. 岩土工程学报, 2007, 29(5): 712-716.
    (WEI Hai-yun, ZHAN Liang-tong, CHEN Yun-min.Experimental study on soil water characteristic curve of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 712-716. (in Chinese))
    [4]
    张文杰, 陈云敏, 邱战洪. 垃圾土渗透性和持水性的试验研究[J]. 岩土力学, 2009, 30(11): 3313-3317.
    (ZHANG Wen-jie, CHEN Yun-min, QIU Zhan-hong.Laboratory and field tests on hydraulic properties of landfilled waste[J]. Rock and Soil Mechanics, 2009, 30(11): 3313-3317. (in Chinese))
    [5]
    WU H, WANG H, ZHAO Y, et al.Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age[J]. Waste Management, 2012, 32(3): 463-470.
    [6]
    BURGER C A, SHACKELFORD C D.Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil water characteristic cure functions[J]. Canadian Geotechnical Journal, 2001, 38(1): 53-66.
    [7]
    ZHANG L M, CHEN Q.Predicting bimodal soil water characteristic curves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 666-670.
    [8]
    FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: John Wiley and Sons Inc, 1993.
    [9]
    RADULOVICH R, SOLORZANO E, SOLLINS P.Soil macropore size distribution from water breakthrough curves[J]. Soil Science Society of America Journal, 1989, 53(2): 556-559.
    [10]
    LUXMOORE R J.Micro-, meso-, and macroporosity of soil[J]. Soil Science Society of America Journal, 1981, 45(6): 671-672.
    [11]
    GERMANN P, BEVEN K.Water flow in soil macro-pores I. An experimental approach[J]. Journal of Soil Science, 1981, 32: 1-13.
    [12]
    JACOB B.Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company Inc, 1972.
    [13]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal , 1980(4): 892-898.
    [14]
    DURNER W.Hydraulic conductivity estimation for soils with heterogeneous pore structure[J]. Water Resources Research, 1994, 30(2): 211-223.
    [15]
    FREDLUND D G, XING A.Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(3): 521-532.
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return