• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
Citation: LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022

Parameter inversion of probability integration method using surface movement vector

More Information
  • Received Date: December 18, 2016
  • Published Date: April 24, 2018
  • The surface movement vector is used to solve the problems of instability, initial value dependence, difficult selection of optimization index, non-rectangular panel and difficult invesion of multi-panel for parameter calculation of probability integral method (PIM). The model uses the minimum squared error of surface movement vectors as the index and the genetic algorithm (GA) as the core optimization inversion algorithm to calculate PIM parameters. Using the surface movement vector can solve the problem of different results obtained when using the mining subsidence and horizontal movement separately, and assess the accuracy of the results. GA can solve the parameter inversion problem for non-rectangular working panel and multi-panel of surface movement observation station. The vector inversion model has no particularly stringent requirements for observation station setting and it reduces the calculation error caused by improper design observation station. To solve the problem of different results for using GA repeatedly, a combination forecasting method of weighted average results is established, which can obtain only one result at the same time so as to improve the reliability and stability of the model. The surface vector GA inversion model avoids a number of shortcomings of the traditional methods, and it is computationally efficient and easy to combine with the existing mining subsidence prediction program. The research results provide a new way to solve the engineering problem of parameter inversion for mining subsidence observation station influenced by non-rectangular multi-panel.
  • [1]
    中华人民共和国国家统计局. 中华人民共和国2016年国民经济和社会发展统计公报[J/OL]. http://www.stats.gov. cn/tjsj/zxfb/201702/t20170228_1467424.html,2017.
    (National Bureau of Statistics of PRC. Statistical communique of the People's Republic of China National economic and social development in 2016[J/OL]. Available at http://www.czs. gov.cn/fgw/ckwx/content_423667.html, 2017. (in Chinese))
    [2]
    李连济. 煤炭城市采空区塌陷及经济转型[J]. 晋阳学刊, 2006(5): 56-60.
    (LI Lian-ji.Mining subsidence and economic transformation of coal city[J]. Journal of Jinyang, 2006(5): 56-60. (in Chinese))
    [3]
    何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州:中国矿业大学出版社, 1991.
    (HE Guo-qing, YANG Lun, LING Geng-di, et al.Mining subsidence[M]. Xuzhou: China University of Mining and Technology Press, 1991. (in Chinese))
    [4]
    郭广礼, 汪云甲. 概率积分法参数的稳健估计模型及其应用研究[J]. 测绘学报, 2000, 29(2): 162-165.
    (GUO Guang-li, WANG Yun-jia.Study of robust determining parameters model for probability-integral method and its application[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(2): 162-165. (in Chinese))
    [5]
    吴启森, 吴侃, 周鸣. 任意形工作面开采时求沉陷预计参数的新方法[J]. 矿山测量, 1998(1): 25-27.
    (WU Qi-sen, WU Kan, ZHOU Ming.A new method of parameters inversion arbitrarily-panel mining subsidence[J]. Mining Survey, 1998(1): 25-27. (in Chinese))
    [6]
    凌庚娣, 吴侃, 张兆江, 等. 开采沉陷空间问题参数分析及其应用研究[J]. 中国矿业大学学报, 1994, 23(2): 64-69.
    (LING Geng-di, WU Kan, ZHANG Zhao-jiang, et al.A research on analysis method of mining subsidence parameters for space problem and its application[J]. Journal of China University of Mining and Technology, 1994, 23(2): 64-69. (in Chinese))
    [7]
    王正帅, 邓喀中, 康建荣. 概率积分法参数反演的文化-随机粒子群优化算法[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(3): 311-315.
    (WANG Zheng-shuai, DENG Ka-zhong, KANG Jian-rong.Random PSO embedded cultural framework for parameters inversion of probability-integral method[J]. Journal of Liaoning technical university (Natural Science), 2013, 32(3): 311-315. (in Chinese))
    [8]
    李培现. 深部开采地表沉陷规律及预测方法研究—以徐州矿区为例[D]. 徐州: 中国矿业大学, 2012.
    (LI Pei-xian.Study on regularity and prediction method of surface subsidence due to deep mining[D]. Xuzhou: China University of Mining and Technology, 2012. (in Chinese))
    [9]
    查剑锋, 冯文凯, 朱晓峻. 基于遗传算法的概率积分法预计参数反演[J]. 采矿与安全工程学报, 2011, 28(4): 655-659.
    (ZHA Jian-feng, FENG Wen-kai, ZHU Xiao-jun.Research on parameters inversion in probability integral method by genetic algorithm[J]. Journal of Mining Safety Engineering, 2011, 28(4): 655-659. (in Chinese))
    [10]
    查剑锋, 贾新果, 郭广礼. 概率积分法求参初值选取的均匀设计方法[J]. 金属矿山, 2006(11): 26-29.
    (ZHA Jian-feng, JIA Xin-guo, GUO Guang-li.Uniform design method for initial value selection in parameter determination by probability-integral method[J]. Metal Mine, 2006(11): 26-29. (in Chinese))
    [11]
    朱建军, 邢学敏, 胡俊, 等. 利用InSAR技术监测矿区地表形变[J]. 中国有色金属学报, 2011, 21(10): 2564-2574.
    (ZHU Jian-jun, XING Xue-min, HU Jun, et al.monitoring of ground surface deformation in mining area with InSAR technique[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2564-2574. (in Chinese))
    [12]
    李强, 邓辉, 周毅. 三维激光扫描在矿区地面沉陷监测中的应用[J]. 中国地质灾害与防治学报, 2014, 25(1): 119-124.
    (LI Qiang, DENG Hui, ZHOU Yi.Application of 3D laser scanning to the ground subsidence deformation monitoring in mining area[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(1): 119-124. (in Chinese))
    [13]
    高均海. 开采沉陷GPS观测试验及技术方法研究[J]. 矿山测量, 2003(3): 31-33.
    (GAO Jun-hai.Research trials and technical methods of mining subsidence observations using GPS[J]. Mine Surveying, 2003(3): 31-33. (in Chinese))
    [14]
    LI P X, TAN Z X, DENG K Z.Calculation of maximum ground movement and deformation coursed by mining of multiple-working faces[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(S3): 562-569.
    [15]
    王小平, 曹立明. 遗传算法—理论、应用与软件实现[M].西安: 西安交通大学出版社, 2002.
    (WANG Xiao-ping, CAO Li-ming.Theory, application and implementation of genetic algorithm of genetic algorithms[M]. Xi'an: Xi'an Jiaotong University Press, 2002. (in Chinese))
    [16]
    崔希民, 彭小沾, 刘文龙. 测量学教程[M]. 北京: 煤炭工业出版社, 2009.
    (CUI Xi-min, PENG Xiao-zhan, LIU Wen-long.Text book of survey[M]. Beijing: China Coal Industry Publishing House, 2009. (in Chinese))
  • Cited by

    Periodical cited type(23)

    1. 韩春鹏,杜超,史梁,祖发金,柴晓鹤. 老采空区地表沉降预测合理监测模式分析. 工程勘察. 2024(02): 48-53 .
    2. 张梦华. 羊东矿保护煤柱开采地表变形研究. 煤炭与化工. 2024(03): 27-29+33 .
    3. 郭庆彪,余庆,郑美楠,罗锦. 测线布设形态与测点缺失对采煤沉陷预计参数反演的影响. 煤田地质与勘探. 2024(06): 57-68 .
    4. 孙述海,王文斌,齐树明,姜佃卿,孙玥,岳伟佳. 新阳煤矿三、四采区地表移动变形规律研究. 资源信息与工程. 2024(04): 59-63 .
    5. 张玮,陈迪,袁利伟,郭庆,李晨洋,李彧,李袁松,李春辉,陈明辉. 基于概率积分法的露地联采地表移动影响范围划定分析. 采矿技术. 2024(05): 12-20 .
    6. 孙志豪,徐良骥,刘潇鹏. 一种基于分段加权赋参的厚松散层矿区沉陷预计方法. 金属矿山. 2024(11): 132-141 .
    7. 王文才,吴周康,高小雷,王鹏. 非充分采动条件下地表移动概率积分法预测. 煤炭技术. 2023(06): 1-4 .
    8. 杨晓玉,朱晓峻. 基于稳健遗传算法的矿山开采沉陷预计参数反演. 金属矿山. 2023(08): 237-244 .
    9. 滕永佳,阎跃观,郭伟,姜岩,胡耀东. 不规则工作面开采地表沉陷线积分预计方法. 矿业科学学报. 2022(01): 82-88 .
    10. 胡辉东,李贤庆,陈纯芳,刘洋,张博翔. 鄂尔多斯盆地杭锦旗地区J58井区盒一段甜点储层特征及主控因素. 矿业科学学报. 2022(01): 71-88 .
    11. 程桦,张亮亮,姚直书,彭世龙,郭龙辉. 厚松散层薄基岩非对称开采井筒偏斜机理. 煤炭学报. 2022(01): 102-114 .
    12. 张劲满,阎跃观,李杰卫,徐瑞瑞,王芷馨,张坤,岳彩亚. 概率积分预计参数的ENN优化算法. 金属矿山. 2022(05): 170-176 .
    13. 周佳薇,吴鑫,刘峰. 煤矿综放开采地表移动规律. 测绘技术装备. 2022(02): 130-134 .
    14. 黄金中,王磊,李靖宇,蒋创,滕超群,李忠,李世保. 群智能优化算法反演概率积分参数的性能比较与分析. 金属矿山. 2022(08): 173-181 .
    15. 丁一,邓念东,姚婷,刘东海,尚慧. 地质采矿条件对铁路路基沉陷预测影响研究. 煤炭科学技术. 2022(07): 135-145 .
    16. 李勇,贺鑫,李培现,王炳,杨中辉,张芷祺,杨可明. 煤矿地表塌陷区天眼巡查监测系统设计及应用. 煤炭工程. 2022(12): 157-163 .
    17. 叶伟,徐良骥,张坤. 概率积分法参数反演的SAAFC模型. 金属矿山. 2021(04): 139-148 .
    18. 李靖宇,王磊,朱尚军,滕超群,江克贵. 基于狼群算法的概率积分法模型参数反演方法研究. 中国矿业. 2020(10): 102-109 .
    19. 陈兴达,余学祥,池深深,汪涛,陈卫卫. 基于多种群遗传算法的概率积分法参数反演. 煤矿安全. 2020(11): 50-54+60 .
    20. 曲相屹,李学良. 长壁开采工作面地表岩移参数求取方法分析. 水力采煤与管道运输. 2019(02): 39-41 .
    21. 李学良. 建筑物开采损害鉴定方法评价及应用. 矿山测量. 2019(04): 9-12 .
    22. 袁鑫,王远坚,郑健,李鹏宇,胡重戎,姜岩. 基于弹性薄板理论的地表下沉预计模型. 金属矿山. 2019(10): 37-41 .
    23. 黄晖,池深深,韩必武,刘可胜. 基于PCA-BP神经网络的概率积分法参数算法研究. 黑龙江科学. 2019(24): 1-5 .

    Other cited types(16)

Catalog

    Article views (519) PDF downloads (238) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return