• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021
Citation: YANG Bing, SUN Ming-xiang, WANG Run-ming, YANG Tao, FENG Jun, ZHOU De-pei. Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 759-767. DOI: 10.11779/CJGE201804021

Shaking table tests on influences of water content of soils on dynamic failure modes and dynamic responses of slopes

More Information
  • Received Date: December 04, 2016
  • Published Date: April 24, 2018
  • Understanding exactly the failure mode and dynamic response of slopes in seismic loading can provide a theoretical guideline for anti-earthquake design of slopes. In order to investigate the influences of water content of soils on dynamic failure modes and dynamic responses of slopes, the laboratory shaking table tests are conducted. The physical process of failure of slopes with different water contents and the dynamic responses of slopes in earthquake loading are analyzed. The test results show that the water content of soils in slopes has important influences on their failure modes. The sandy slopes with water contents of 6.8% and 10% in the soils have failure modes of shatter-collapse sliding and shatter-breakup sliding respectively. The clay slopes with water contents of 18.1% and 24.6% in the soils have failure modes of shatter-breakup sliding and shatter-creep sliding respectively. The slope with a larger water content of soils is more stable than that with a smaller water content at the range of parameters considered. Under the action of horizontal dynamic load, the variation of displacement of soils at the surface of slope can reflect the characteristics of slope failure. The amplification effect of acceleration for the slope with a larger water content of soils is smaller than that with a smaller water content for the case of sandy soil slope and cohesive slope considered. The mechanism about the influences of water content in the slope on the failure of slopes is explained with the damping of soils.
  • [1]
    黄润秋, 李为乐. “5·12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592.
    (HUANG Runqiu, LI Weile.Research on development and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2008[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592. (in Chinese))
    [2]
    宋胜武. 汶川大地震工程震害调查分析与研究[M]. 北京:科学出版社, 2009.
    (SONG Sheng-wu.Investigation analysis and research on Engineering harzads in Wenchuan Earthquake[M]. Beijing: Science Press, 2009. (in Chinese))
    [3]
    李秀珍, 孔纪名.“5·12”汶川地震诱发典型滑坡的类型和特征[J]. 山地学报, 2011, 29(5): 598-607.
    (LI Xiu-zhen, KONG Ji-ming.Types and characteristics of typical landslides triggered by “5·12” Wenchuan Earthquake[J]. Journal of Mountain Science, 2011, 29(5): 598-607. (in Chinese))
    [4]
    卢坤林, 朱大勇, 杨扬. 边坡失稳过程模型试验研究[J].岩土力学,2012, 33(3): 778-782.
    (LU Kun-lin, ZHU Da-yong, YANG Yang.Model test study of slope failure progress[J]. Rock and Soil Mechanics, 2012, 33(3): 778-782. (in Chinese))
    [5]
    刘婧雯, 黄博, 邓辉, 等. 地震作用下堆积体边坡振动台模型试验及抛出现象分析[J]. 岩土工程学报, 2014, 36(2): 307-311.
    (LIU Jing-wen, HUANG Bo, DENG Hui, et al. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 307-311. (in Chinese))
    [6]
    孙志亮, 孔令伟, 郭爱国, 等. 地震作用下堆积体边坡的坡面变形与失稳机制[J]. 岩土力学, 2015, 36(12): 3465-3472.
    (SUN Zhi-liang, KONG Ling-wei, GUO Ai-guo, et al.Surface deformations and failure mechanisms of deposit slope under seismic excitation[J]. Rock and Soil Mechanics, 2015, 36(12): 3465-3472. (in Chinese))
    [7]
    WARTMAN J, SEED R B, BRAY J D.Shaking table modeling of seismically induced deformations in slopes[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(5): 610-622.
    [8]
    LIN M L, WANG K L.Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology, 2006, 86(2): 118-133.
    [9]
    徐光兴, 姚令侃, 高召宁, 等. 边坡动力特性与动力响应的大型振动台模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3): 624-632.
    (XU Guang-xing, YAO Ling-kan, GAO Zhao-ning, et al.Large-scale shaking table model test study on dynamic characteristics and dynamic responses of slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 624-632. (in Chinese))
    [10]
    陈新民, 沈建, 魏平, 等. 下蜀土边坡地震稳定性的大型振动台试验研究(Ⅱ)—试验结果及分析[J]. 防灾减灾工程学报, 2010, 30(6): 587-594.
    (CHEN Xin-min, SHEN Jian, WEI Ping, et al Large-scale shanking table test of seistmic stability of Xiashu Loess slope: analysis of test results(2)[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6): 587-594. (in Chinese))
    [11]
    董金玉, 杨国香, 伍法权, 等. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J]. 岩土力学, 2011, 32(10): 2977-2982.
    (DONG Jin-yu, YANG Guo-xiang, WU Fa-quan, et al.The large-scale shaking table test study of dynamic response and failure mode of bedding rock slope under earthquake[J]. Rock and Soil Mechanics, 2011, 32(10): 2977-2982. (in Chinese))
    [12]
    李振生, 巨能攀, 侯伟龙, 等. 陡倾层状岩质边坡动力响应大型振动台模型试验研究[J]. 工程地质学报, 2012, 20(2): 242-247.
    (LI Zhen-sheng, JU Neng-pan, HOU Wei-long, et al.Large-scale shaking table model tests for dynamic response of steep stratified rock slopes[J]. Journal of Engineering Geology, 2012, 20(2): 242-247. (in Chinese))
    [13]
    杨国香, 伍法权, 董金玉, 等. 地震作用下岩质边坡动力响应特性及变性破坏机制研究[J]. 岩石力学与工程学报, 2012, 31(4): 696-702.
    (YANG Guo-xiang, WU Fa-quan, DONG Jin-yu, et al.Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 696-702. (in Chinese))
    [14]
    赵慧丽, 张弥, 李兆平. 含水率对北京地区非饱和土抗剪强度影响的试验研究[J]. 石家庄铁道学院学报, 2001, 14(4): 30-33.
    (ZHAO Hui-li, ZHANG Mi, LI Zhao-ping.The study of water content influence on unsaturated soil shear strength by test[J]. Journal of Shijiazhuang and Railway Institute, 2001, 14(4): 30-33. (in Chinese))
    [15]
    毕庆涛, 姜国萍, 丁树云. 含水率对红黏土抗剪强度的影响[J]. 地球与环境, 2005, 33(增刊): 144-147.
    (BI Qing-tao, JIANG Guo-ping, DING Shu-yun.Water content influence on the shearing strength of red clay[J]. Earth and environment, 2005, 33(S0): 144-147. (in Chinese))
    [16]
    肖学沛, 李天斌. 某滑坡炭质软岩抗剪强度受含水率影响分析[J]. 水土保持研究, 2005, 12(1): 75-78.
    (XIAO Xue-pei, LI Tian-bin.Analysis of shear strength affected by water content of char weak rock in one certain landslide[J]. Research of Soil and Water Conservation, 2005, 12(1): 75-78. (in Chinese))
    [17]
    杨永红, 刘淑珍, 王成华. 土壤含水率和植被对浅层滑坡土体抗剪强度的影响[J]. 灾害学, 2006, 21(2): 50-54.
    (YANG Yong-hong, LIU Shu-zhen, WANG Cheng-hua.Impacts of soil moisture content and vegetation on shear strength of soil in surface landslide[J]. Journal of catastrophology, 2006, 21(2): 50-54. (in Chinese))
    [18]
    陈国兴, 谢君斐, 张克绪. 土的动模量和阻尼比的经验估计[J]. 地震工程与工程振动, 1995, 15(1): 73-84.
    (CHEN Guo-xing, XIE Jun-fei, ZHANG Ke-xu.The empirical evalution of soil moduli and damping ratio for dynamic analysis[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 73-84. (in Chinese))
    [19]
    刘雪珠, 陈国兴, 朱定华, 等. 苏南地区新近沉积土的动剪切模量比与阻尼比试验研究[J]. 自然灾害学报, 2006, 15(3): 116-122.
    (LIU Xue-zhu, CHEN Guo-xing, ZHU Ding-hua, et al.Dynamic shear modulus ratio and damping ratio of recently deposited soils in southern area of Jiangsu Province experimental study[J]. Journal of Natural Disasters, 2006, 15(3): 116-122. (in Chinese))
    [20]
    申权. 土体阻尼测试新方法及其阻尼性能变化规律的研究[D]. 南昌: 南昌航空大学, 2013.
    (SHEN Quan.The new method to test soil damping and the change law of its damping performance[D]. Nanchang: Nanchang Hangkong University, 2013. (in Chinese))
    [21]
    赵淑萍, 朱元林, 何平, 等. 冻土动力学参数测试研究[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2677-2681.
    (ZHAO Shu-ping, ZHU Yuan-lin, HE Ping, et al.Testing study on dynamic mechanics parameters of frozen soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2677-2681. (in Chinese))
    [22]
    张向东, 刘家顺, 兰常玉, 等. 辽西地区冻风积土动力特性试验分析[J]. 中国地质灾害与防治学报, 2011, 22(2): 135-142.
    (ZHANG Xiang-dong, LIU Jia-shun, LAN Chang-yu, et al.Dynamic test analysis of frozen Aeolian soil under earthquake loading[J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(2): 135-142. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 卢汉青,包卫星,陈锐,郭强,尹严. 基于核磁共振技术的冻融板岩损伤特性试验研究. 地下空间与工程学报. 2025(01): 78-86+99 .
    2. 贾朝军,庞锐锋,俞隽,雷明锋,李忠. 基于离散元的岩石冻融损伤劣化机制研究. 岩土力学. 2024(02): 588-600 .
    3. 赵越,司运航,张译丹,赵京禹. 水化-冻融耦合条件下大理岩蠕变损伤本构模型. 吉林大学学报(地球科学版). 2024(01): 231-241 .
    4. 樊赖宇,吴志军,储昭飞,翁磊,王智洋,刘泉声,陈结. 动态冲击下红砂岩蠕变特性及损伤本构模型. 岩土力学. 2024(06): 1608-1622 .
    5. 刘文博,张树光,黄翔,刘轶品. 基于蠕变曲线对称的蠕变模型研究及参数敏感性分析. 煤炭科学技术. 2024(07): 48-56 .
    6. 宋勇军,操警辉,程柯岩,杨慧敏,毕冉,张琨. 砂岩冻结/解冻过程蠕变特性研究. 水文地质工程地质. 2024(06): 93-103 .
    7. 王波,任永政,田志银,马世纪,王军,黄万朋,王灵. 流变扰动条件下岩石微观损伤试验研究. 煤炭学报. 2024(S2): 852-861 .
    8. 杨志全,甘进,樊详珑,朱颖彦,杨溢,丁渝池. 岩石冻融损伤机理研究进展及展望. 防灾减灾工程学报. 2023(01): 176-188 .
    9. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 .
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 .
    11. 闫建兵,张小强,宋选民,王开,姜玉龙,岳少飞. 低围压条件下无烟煤三轴蠕变特性试验研究(英文). Journal of Central South University. 2023(05): 1618-1630 .
    12. 张卫泽,王琳庆,郭文重,陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究. 水文地质工程地质. 2023(04): 137-148 .
    13. 赵越,李磊,闫晗,肖万山,苏艳军. 水化-冻融耦合作用下大理岩单轴蠕变力学特性. 吉林大学学报(地球科学版). 2023(04): 1195-1203 .
    14. 包卫星,卢汉青,郭强,尹严. 新疆高寒炭质板岩隧道围岩冻融劣化特性研究. 工程地质学报. 2023(04): 1213-1224 .
    15. 王丹,冯子军,张子翔. 砂岩的三维非线性损伤蠕变特性. 矿业研究与开发. 2023(10): 139-144 .
    16. 付宏渊,段鑫波,史振宁. 冻融循环下粉砂质泥岩强度劣化特性及细观机理研究. 工程地质学报. 2023(06): 1833-1841 .
    17. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 .
    18. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 .
    19. 唐志强,吉锋,许汉华,冯文凯,何萧. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型. 科学技术与工程. 2022(16): 6421-6429 .
    20. 尹彦波. 不同应变率下冻融损伤大理岩的动态压缩特性研究. 矿业研究与开发. 2022(08): 139-145 .
    21. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 .
    22. 王飞,高明忠,邱冠豪,汪亦显,周昌台,王之禾. 初始损伤–载荷–冻融作用下红砂岩的孔隙结构及力学特性. 工程科学与技术. 2022(06): 194-203 .

    Other cited types(43)

Catalog

    Article views (334) PDF downloads (289) Cited by(65)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return