• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Can, LI Shu-chen, YAN Qin, LI Jing-long, ZHAO Shi-seng. Photoelastic experiments on failure characteristics of fractured rock with different sizes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. DOI: 10.11779/CJGE201803023
Citation: XIE Can, LI Shu-chen, YAN Qin, LI Jing-long, ZHAO Shi-seng. Photoelastic experiments on failure characteristics of fractured rock with different sizes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. DOI: 10.11779/CJGE201803023

Photoelastic experiments on failure characteristics of fractured rock with different sizes

More Information
  • Received Date: March 05, 2017
  • Published Date: March 24, 2018
  • In order to fully study the effect of specimen size and crack dip angle on the failure mechanism of fractured rock, uniaxial compression tests on rocks with different specimen sizes and crack dip angles are performed. The whole stress and strain of specimen surface is calculated based on the optical-stress law. The effect of sizes and crack dip angles on rock strength and failure modes is analyzed, and the extension mechanism of fissures in the fractured rock is studied. The test results show that the uniaxial compression stress-strain curve of fractured rock can be divided into the elastic stage, plastic stage and post-peak softening stage, however, the residual stage is not obvious. The elastic modulus of fractured rock during pre-peak stage increases with the increase of height-width ratio of specimens and decreases with the increase of crack dip angles. The uniaxial compressive strength decreases with the increase of height-width ratio of specimens. The post-peak softening characteristics of fractured rock are influenced by crack dip angles and specimen sizes. The greater the crack dip angle and height-width ratio, the more sudden the failure, the more obvious the brittleness. The maximum strain and stress distribution is in the center of the pre-crack, and damage firstly occurs in the pre-crack. With the increase of stress level, the position of the maximum strain and stress propagates to the ends of the crack and extends to the direction of crack parallel to the axial load. The results may provide a theoretical basis for the establishment of constitutive model for fractured rock and the stability analysis of joint rock mass.
  • [1]
    周磊, 朱哲明, 刘邦. 隧道周边不同位置径向裂纹对隧道围岩稳定性影响规律的研究[J]. 岩土工程学报, 2016, 38(7): 1230-1237.
    (ZHOU Lei, ZHU Zhe-ming, LIU Bang.Influence of radial cracks on stability of surrounding rocks at different locations around tunnel[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1230-1237. (in Chinese))
    [2]
    岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706.
    (CEN Duo-feng, HUANG Da, HUANG Run-qiu.Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. (in Chinese))
    [3]
    DYSKIN A V, GERMANOVICH L N, USTINOV K B.A 3-D model of wing crack growth and interaction[J]. Engineering Fracture Mechanics, 1999, 63(1): 81-110.
    [4]
    DYSKIN A V, SAHOURYEH E, JEWELL R J, et al.Influence of shape and locations of initial 3-D cracks on their growth in uniaxial compression[J]. Engineering Fracture Mechanics, 2003, 70(15): 2115-2136.
    [5]
    LEE H, JEON S.An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979-999.
    [6]
    蒲成志, 曹平, 赵延林, 等. 单轴压缩下多裂隙类岩石材料强度试验与数值分析[J]. 岩土力学, 2010, 31(11): 3661-3666.
    (PU Cheng-zhi, CAO Ping, ZHAO Yan-lin, et al.Numerical analysis and strength experiment of rock-like materials with multi-fissures under uniaxial compression[J]. Rock and Soil Mechanics, 2010, 31(11): 3661-3666. (in Chinese))
    [7]
    MANOUCHEHRIAN A, SHARIFZADEH M, MARJI M F, et al.A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression[J]. Archives of Civil and Mechanical Engineering, 2014, 14(1): 40-52.
    [8]
    黄彦华, 杨圣奇. 断续裂隙类岩石材料三轴压缩力学特性试验研究[J]. 岩土工程学报, 2016, 28(7): 1212-1220.
    (HUANG Yan-hua, YANG Sheng-qi.Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 28(7): 1212-1220. (in Chinese))
    [9]
    陈新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781-789.
    (CHEN Xin, LIAO Zhi-hong, LI De-jian.Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781-789. (in Chinese))
    [10]
    杨洁, 荣冠, 程龙, 等. 节理峰值抗剪强度试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 884-894.
    (YANG Jie, RONG Guan, CHENG Long, et al.Experimental study of peak shear strength of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 884-894. (in Chinese))
    [11]
    刘欣, 刘爱华, 李夕兵. 充填柱状节理类岩石材料的试验研究[J]. 岩石力学与工程学报, 2014, 3(4): 772-777.
    (LIU Xin, LIU Ai-hua, LI Xi-bing.Experimental study of columnar jointed sandstone-like material with preset filling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 3(4): 772-777. (in Chinese))
    [12]
    袁小清, 刘红岩, 刘京平. 非贯通裂隙岩体三维复合损伤本构模型[J]. 岩土工程学报, 2016, 38(1): 91-99.
    (YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping.3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. (in Chinese))
    [13]
    孙熙震, 李杨杨, 江宁, 等. 类岩石材料三维裂纹传播规律试验研究[J]. 岩土力学, 2016, 37(4): 965-972, 980.(SUN Xi-zhen, LI Yang-yang, JIANG Ning, et al. Experimental study of 3D crack propagation characteristics in rock-like materials[J]. Rock and Soil Mechanics, 2016, 37(4): 965-972, 980. (in Chinese))
    [14]
    柴红保, 曹平, 赵延林, 等. 裂隙岩体损伤演化本构模型的实现及应用[J]. 岩土工程学报, 2010, 32(7): 1047-1053.
    (CHAI Hong-bao, CAO Ping, ZHAO Yan-lin, et al.Implementation and application of constitutive model for damage evolution of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1047-1053. (in Chinese))
    [15]
    杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118.
    (YANG Sheng-qi, SU Cheng-dong, XU Wei-ya.Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. (in Chinese))
    [16]
    王青元, 朱万成, 刘洪磊, 等. 单轴压缩下绿砂岩长期强度的尺寸效应研究[J]. 岩土力学, 2016, 37(4): 981-990.
    (WANG Qing-yuan, ZHU Wan-cheng, LIU Hong-lei, et al.Size effect of long-term strength of sandstone under uniaxial compression[J]. Rock and Soil Mechanics, 2016, 37(4): 981-990. (in Chinese))
    [17]
    靖洪文, 苏海健, 杨大林, 等. 损伤岩样强度衰减规律及其尺寸效应研究[J]. 岩石力学与工程学报, 2012, 31(3): 543-549.
    (JING Hong-wen, SU Hai-jian, YANG Da-lin, et al.Study of strength degradation law of damaged rock sample and its size effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 543-549. (in Chinese))
    [18]
    梁昌玉, 李晓, 吴树仁. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. 岩土力学, 2016, 37(12): 3472-3480.
    (LIANG Chang-yu, LI Xiao, WU Shu-ren.Research on energy characteristics of size effect of granite under low/intermediate strain rates[J]. Rock and Soil Mechanics, 2016, 37(12): 3472-3480. (in Chinese))
    [19]
    董伟, 何化南, 吴智敏, 等. 光弹贴片法研究混凝土Ⅰ-Ⅱ复合型裂缝扩展过程[J]. 工程力学, 2010, 27(9): 41-48.
    (DONG Wei, HE Hua-nan, WU Zhi-min, et al.Experimental investigation on double-K fracture parameters for small size specimens in concrete[J]. Engineering Mechanics, 2010, 27(9): 41-48. (in Chinese))
    [20]
    范亚楠, 毛灵涛, 周凯. 含预制裂纹岩石断裂的光弹性贴片法研究[C]// 北京: 北京力学会出版社, 2012.
    (FAN Ya-nan, MAO Ling-tao, ZHOU Kai.Photoelastic experimental investigation on fracture parameters in fissured rock[C]// Beijing: Beijing Society of Theoretical and Applied Mechanics Press, 2012. (in Chinese))
    [21]
    NOWAK T P, JANKOWSKI L J, JASIENKO J.Application of photoelastic coating technique in tests of solid wooden beams reinforced with CFRP strips[J]. Archives of Civil and Mechanical Engineering, 2010, 10(2): 53-66.
    [22]
    平洋. 峰后岩体宏细观破裂过程数值模拟方法及应用研究[D]. 济南: 山东大学, 2015.
    (PING Yang.Numerical simulation method of macro-mesoscopic failure process of post-peak rock mass and its application[D]. Jinan: Shandong University, 2015. (in Chinese))
    [23]
    SINAIE S, HEIDARPOUR A, ZHAO X L.Effect of size on the response of cylindrical concrete samples under cyclic loading[J]. Construction and Building Materials, 2015, 84(6): 399-408.
    [24]
    TARASOV B, POTVIN Y.Universal criteria for rock brittleness estimation under triaxial compression universal criteria for rock brittleness estimation under triaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 59: 57-69.
    [25]
    赞德曼F, 雷德诺 S, 戴利 J W. 光弹性贴片法[M]. 北京: 机械工业出版社, 1978.
    (ZANDMAN F, REDNER S, DALY J W.The photo-elastic coating method[M]. Beijing: China Machine Press, 1978. (in Chinese))

Catalog

    Article views (386) PDF downloads (299) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return