• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Yu-jin, SONG Er-xiang. Dynamic simulation of“12·20”Shenzhen landslide[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 441-448. DOI: 10.11779/CJGE201803007
Citation: SUN Yu-jin, SONG Er-xiang. Dynamic simulation of“12·20”Shenzhen landslide[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 441-448. DOI: 10.11779/CJGE201803007

Dynamic simulation of“12·20”Shenzhen landslide

More Information
  • Received Date: May 09, 2016
  • Published Date: March 24, 2018
  • The filled soil of Shenzhen landslide is treated as saturated porous media. The excess pore pressure due to fast filling process is derived using the classical one-dimensional consolidation theory by assuming the thickness of the filled soil to increase linearly. Meanwhile, another part of the excess pore pressure induced by the soil contraction under shear deformation is derived by using the modified Cam-clay model. Then the effective stress is obtained by subtracting the pore pressure, i.e., the static pore pressure and the two parts of the excess pore pressure, from the total stress. The undrained shear strength can be expressed by the effective friction angle and the effective stress. Finally, the landslide is simulated using the material point method by assuming an undrained run-out process in which the soil strength keeps constant. The destructive effect of the sliding soil on the buildings is also analyzed. The proposed theory can be used to explain the extraordinary flow ability of the soil satisfactorily.
  • [1]
    百度百科. 12·20深圳山体滑坡[Z]. 2016.
    (Baidu encyclopedia. 12·20 Shenzhen landslide[Z]. 2016. (in Chinese))
    [2]
    人民网. 安监总局局长:深圳“12·20”滑坡事故已被认定为重大安全生产责任事故[Z]. 2016.
    (People's Daily Online. The country's top work safety official: 12·20 Shenzhen landslide is a serious production accident[Z]. 2016. (in Chinese))
    [3]
    调查:深圳山体滑坡大调查,http://www.iqiyi.com/ v_19rrkg3vpg.html[Z]. 2016. (Survey: Shenzhen landslide survey, http://www.iqiyi.com/v_19rrkg 3vpg.html[Z]. 2016. (in Chinese))
    [4]
    KENT P.The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 1966, 74(1): 79-83.
    [5]
    DAVIES T R H. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 1982, 15(1): 9-24.
    [6]
    OKURA Y, KITAHARA H, SAMMORI T, et al.The effects of rockfall volume on runout distance[J]. Engineering Geology, 2000, 58(2): 109-124.
    [7]
    SASSA K.Geotechnical model for the motion of landslides[C]// Proceedings of the 5th International Symposium on Landslides. Lausanne, 1988: 37-55.
    [8]
    ALONSO E E, PINYOL N M, PUZRIN A M.Geomechanics of failures. advanced topics[M]. Springer Netherlands, 2010.
    [9]
    COLLINS G S, MELOSH H J.Acoustic fluidization and the extraordinary mobility of sturzstroms[J]. Journal of Geophysical Research (Solid Earth), 2003, 108(B10).
    [10]
    KOERNER H J.Flow mechanisms and resistances in the debris streams of rock slides[J]. Bulletin of the International Association of Engineering Geology, 1977, 16(1): 101-104.
    [11]
    张明, 殷跃平, 吴树仁. 高速远程滑坡-碎屑流运动机理研究发展现状与展望[J]. 工程地质学报, 2010(6): 805-817.
    (ZHANG Ming, YIN Yue-ping, WU Shu-ren, et al.Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 2010(6): 805-817. (in Chinese))
    [12]
    ZHANG X, KRABBENHOFT K, SHENG D, et al.Numerical simulation of a flow-like landslide using the particle finite element method[J]. Computational Mechanics, 2015, 55(1): 167-177.
    [13]
    孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015(7): 1218-1225.
    (SUN Yu-jin, SONG Er-xiang.Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015(7): 1218-1225. (in Chinese))
    [14]
    SUN Yu-jin, YANG Jun, SONG Er-xiang.Runout analysis of landslides using material point method[J]. Earth and Environmental Science, 2015, 26(1): 2014.
    [15]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
    (LI Guang-xin.Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [16]
    GIBSON R E.The progress of consolidation in a clay layer increasing in thickness with time[J]. Géotechnique, 1958, 8(4): 171-182.
    [17]
    姚仰平, 万征, 杨一帆. 饱和黏土不排水剪切的热破坏[J]. 岩土力学, 2011, 32(9): 2561-2569.
    (YAO Yang-ping, WAN Zheng, YANG Yi-fan, et al.Thermal failure for saturated clay under undrained condition[J]. Rock and Soil Mechanics, 2011, 32(9): 2561-2569. (in Chinese))
    [18]
    SONG Er-xiang.Elasto-plastic consolidation under steady and cyclic loads[D]. Delft: Delft University of Technology, 1990.
  • Cited by

    Periodical cited type(10)

    1. 刘仕洪,宋琨,郭磊,曹俊,姜波. 降雨诱发国道G326顺层滑坡破坏与运动过程研究. 三峡大学学报(自然科学版). 2025(01): 44-49 .
    2. 孙文超,王君豪,徐文杰,董晓阳,任禾,王洪兵,张学杰,王恒威. 基于物质点法的高速公路弃渣场稳定性及灾害动力学分析. 岩土力学. 2025(03): 991-1000 .
    3. 王晶磊,孙政,杨宇杰,周晓敏. 土体颗粒物流动物质点法模拟的弹塑性和非牛顿流体本构模型比较研究. 计算力学学报. 2024(03): 452-457 .
    4. 张世佳,温经林,张华,邹江湖,叶军明,王一帆,成德飞. 多雾条件下边坡雷达在露天矿山边坡监测中的应用研究. 矿产勘查. 2024(S1): 243-248 .
    5. 艾国栋,李云青,资丽君,梁昌奇. 天然和暴雨条件下的物质点滑坡变形机制分析. 钻探工程. 2023(05): 23-28 .
    6. 高宇新,朱鸿鹄,张春新,刘威,王静,张巍. 砂土中锚板上拔三维物质点法模拟研究. 岩土工程学报. 2022(02): 295-304 . 本站查看
    7. 王升,曾鹏,李天斌,孙小平. 土质滑坡失稳、运动及冲击压力物质点法模拟研究. 工程地质学报. 2022(04): 1362-1370 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 张春新,朱鸿鹄,周谷宇,张巍,周公旦. 落球检测技术的三维物质点法模拟研究. 防灾减灾工程学报. 2021(02): 311-320 .
    10. 唐雄,李新坡,姚军,孙玉莲. 基于多相物质点法的土-水耦合动力模型. 岩土力学. 2021(12): 3345-3355 .

    Other cited types(23)

Catalog

    Article views (577) PDF downloads (633) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return