• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Le-wen, XIN Dong-dong, DING Wan-tao, SU Chuan-xi, WU Qi-long, WANG Hong-bo. Process analysis of split grouting based on foundation bed coefficient method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 399-407. DOI: 10.11779/CJGE201803002
Citation: ZHANG Le-wen, XIN Dong-dong, DING Wan-tao, SU Chuan-xi, WU Qi-long, WANG Hong-bo. Process analysis of split grouting based on foundation bed coefficient method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 399-407. DOI: 10.11779/CJGE201803002

Process analysis of split grouting based on foundation bed coefficient method

More Information
  • Received Date: December 27, 2016
  • Published Date: March 24, 2018
  • In order to reveal the dynamic process and change rules of slurry diffusion in split grouting, the foundation bed coefficient method is employed to study the influence of size effect on deformation of different soils in the process of split grouting. The width equation of split crack of different soils is established. The form of slurry diffusion is supposed to be the horizontal radiation circle. The process of split grouting is analyzed based on the stress coupling effect of slurry and soil and the conservation of mass of slurry. Based on the above analysis, the equations for variations of slurry diffusion radius, temporal and spatial variations of slurry pressure and split crack width are obtained. The rules and influence factors of slurry diffusion are investigated. The analysis results show that the slurry diffusion radius continues to grow along with time, but the growth rate continues to reduce. The slurry diffusion radius is positively related to the standard value of foundation bed coefficient and negatively related to the slurry viscosity. The slurry diffusion radius of cohesive soil is smaller than that of sandy soil. The slurry pressure is positively related to the time and the standard value of foundation bed coefficient. At most positions, there is a positive correlation between the slurry pressure and the viscosity. The slurry pressure of cohesive soil is smaller than that of sandy soil. The split crack width continues to grow along with time. At most positions, the split crack width is negatively related to the standard value of foundation bed coefficient and positively related to the slurry viscosity, and the split crack width of cohesive soil is larger than that of sandy soil. Finally the comparative analysis of the calculated and field test values indicates that the difference of calculated and measured results is acceptable. Obviously, the proposed method is of high rationality.
  • [1]
    张庆松, 韩伟伟, 李术才, 等. 灰岩角砾岩破碎带涌水综合注浆治理[J]. 岩石力学与工程学报, 2012, 31(12): 2412-2419.
    (ZHANG Qing-song, HAN Wei-wei, LI Shu-cai, et al.Comprehensive grouting treatment for water gushing analysis in limestone breccias fracturezone[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2412-2419. (in Chinese))
    [2]
    邝键政, 昝月稳, 王杰, 等. 岩土工程注浆理论与工程实例[M]. 北京:科学出版社, 2001.
    (KUANG Jian-zheng, ZAN Yue-wen, WANG Jie, et al.Theory and project example of grout in geotechnical engineering[M]. Beijing: Science Press, 2001. (in Chinese))
    [3]
    邹金锋, 李亮, 杨小礼. 劈裂注浆扩散半径及压力衰减分析[J]. 水利学报, 2006, 37(3): 314-319.
    (ZOU Jin-feng, LI Liang, YANG Xiao-li.Penetration radius and pressure attenuation law in fracturing grouting[J]. Journal of Hydraulic Engineering, 2006, 37(3): 314-319. (in Chinese))
    [4]
    李鹏, 张庆松, 张霄, 等.基于模型试验的劈裂注浆机制分析[J]. 岩土力学, 2014, 35(11): 3221-3230.
    (LI Peng, ZHANG Qing-song, ZHANG Xiao, et al.Analysis of fracture grouting mechanism based on model test[J]. Rock and Soil Mechanics, 2014, 35(11): 3221-3230. (in Chinese))
    [5]
    张忠苗, 邹健, 贺静漪, 等. 黏土中压密注浆及劈裂注浆室内模拟试验分析[J]. 岩土工程学报, 2009, 31(12): 1818-1824.
    (ZHANG Zhong-miao, ZOU Jian, HE Jing-yi, et al.Laboratory tests on compaction grouting and fracture grouting of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1818-1824. (in Chinese))
    [6]
    张连震, 李志鹏, 张庆松, 等. 基于土体非线性压密效应的劈裂注浆机制分析[J]. 岩石力学与工程学报, 2016, 35(7): 1483-1493.
    (ZHANG Lian-zhen, LI Zhi-peng, ZHANG Qing-song, et al.Split grouting mechanism based on nonlinear characteristics of compression process of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1483-1493. (in Chinese))
    [7]
    张忠苗, 邹健. 桩底劈裂注浆扩散半径和注浆压力研究[J]. 岩土工程学报, 2008, 30(2): 181-184.
    (ZHANG Zhong-miao, ZOU Jian.Penetration radius and grouting pressure in fracture grouting[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 181-184. (in Chinese))
    [8]
    李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014, 35(3): 745-751.
    (LI Shu-cai, ZHANG Wei-jie, ZHANG Qing-song, et al.Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3): 745-751. (in Chinese))
    [9]
    张庆松, 张连震, 刘人太, 等. 基于“浆-土”界面应力耦合效应的劈裂注浆理论研究[J]. 岩土工程学报, 2016, 38(2): 323-330.
    (ZHANG Qing-song, ZHANG Lian-zhen, LIU Ren-tai, et al.Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 323-330. (in Chinese))
    [10]
    TERZAGHI K.Evaluation of coefficients of subgrade reaction[J]. Géotechnique, 1955, 5(4): 297-326.
    [11]
    GB50021—2001 岩土工程勘察规范[S]. 北京: 中国建筑工业出版社, 2001. (GB50021—2001 Code for investigation of geotechnical engineering[S]. Beijing: China Architecture and Building Press, 2001. (in Chinese))
    [12]
    GB50307—2012城市轨道交通岩土工程勘察规范[S]. 北京: 中国计划出版社, 2012.
    (GB50307—2012 Code for geotechnical investigations of urban rail transit[S]. Beijing: China Planning Press, 2012. (in Chinese))
    [13]
    郦正能, 张纪奎. 工程断裂力学[M]. 北京: 北京航空航天大学出版社, 2012.
    (LI Zheng-neng, ZHANG Ji-kui.Engineering fracture mechanics[M]. Beijing: Beihang University Press, 2012. (in Chinese))
    [14]
    李术才, 刘人太, 张庆松, 等. 基于黏度时变性的水泥-玻璃浆液扩散机制研究[J]. 岩石力学与工程学报, 2013, 32(12): 2415-2421.
    (LI Shu-cai, LIU Ren-tai, ZHANG Qing-song, et al.Research on C-S slurry diffusion mechanism with time-dependent behavior of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2415-2421. (in Chinese))
    [15]
    李术才, 韩伟伟, 张庆松, 等. 地下工程动水注浆速凝浆液黏度时变特性研究[J]. 岩石力学与工程学报, 2013, 32(1): 1-7.
    (LI Shu-cai, HAN Wei-wei, ZHANG Qing-song, et al.Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 1-7. (in Chinese))
    [16]
    阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714.
    (RUAN Wen-jun.Spreading model of grouting in rock mass fissures based on time-dependent behavior of viscosity of cement-based grouts[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2709-2714. (in Chinese))
  • Related Articles

    [1]LIU Yadong, LIU Xian, LI Xueyou, YANG Zhiyong. Adaptive reliability analysis of spatially variable soil slopes using strength reduction sampling and Gaussian process regression[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 978-987. DOI: 10.11779/CJGE20230065
    [2]Study on the proportional coefficient m of horizontal subgrade reaction for Shanghai clayey soils and engineering verification[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240012
    [3]XU Si-fa, ZHOU Qi-hui, ZHENG Wen-hao, ZHU Yong-qiang, WANG Zhe. Influences of construction of foundation pits on deformation of adjacent operating tunnels in whole process based on monitoring data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 804-812. DOI: 10.11779/CJGE202105003
    [4]ZENG Hao, TANG Chao-sheng, LIU Chang-Li, LIN Luan, XU Jin-Jian, WANG Dong-wei, SHI Bin. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
    [5]WANG Chun-Bo, DING Wen-qi, TIAN Jiao, TANG Zhi-cheng. Coefficient of horizontal sub-grade reaction considering rheological properties of soft soils in Wuxi region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 607-611.
    [6]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [7]CHENG Weishuai, LIU Dan. Impact analysis of reservoir retirement:macro-processes and final effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1765-1770.
    [8]YING Hongwei, GUO Yue. 3D analysis on a deep beam-slab braced foundation pit considering effect of construction process[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1670-1675.
    [9]YANG Tianhong, TAN Chunan, ZHU Wancheng, FENG Qiyan. Coupling analysis of seepage and stresses in rock failure process[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 489-493.
    [10]Ran Qiquan, Gu Xiaoyun. Coupling analysis of multiphase flow and stress for oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 69-73.
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (394) PDF downloads (210) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return