Citation: | CUI Sheng-hua, PEI Xiang-jun, WANG Gong-hui, HUANG Run-qiu. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. DOI: 10.11779/CJGE201712016 |
[1] |
殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. (YIN Yue-ping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese))
|
[2] |
BURCHFIEL B C, ROYDEN L H, VAN DER Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China[J]. GSA Today, 2008, 18(7): 4-11.
|
[3] |
LI Y Q, JIA D, SHAW J H, et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake: three-dimensional modeling of the Longmen Shan fold-and-thrust belt[J]. J Geophys Res, 2010, 115(B04317): 1-26.
|
[4] |
GORUM T, FAN X M, VAN Westen C J, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011, 133(3): 152-167.
|
[5] |
DAI F C, XU C, YAO X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. J Asian Earth Sci, 2011, 40(4): 883-895.
|
[6] |
许 冲, 徐锡伟. 2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3888-3908. (XU Chong, XU Xi-wei. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysis[J]. Chineses Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3888-3908. (in Chinese))
|
[7] |
黄润秋, 张伟锋, 裴向军. 大光包滑坡工程地质研究[J]. 工程地质学报, 2014, 22(4): 557-585. (HUANG Run-qiu, ZHANG Wei-feng, PEI Xiang-jun. Engineering geological study on Daguangbao landslide[J]. Journal of Engineering Geology, 2014, 22(4): 557-585. (in Chinese))
|
[8] |
黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. (HUANG He-qing, ZHAO Qi-hua. Basic characteristics and preliminary mechanism analysis of large scale rockslide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177. (in Chinese))
|
[9] |
孙 萍, 张永双, 殷跃平, 等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报, 2009, 17(6): 737-744. (SUN Ping, ZHANG Yong-shuang, YIN Yue-ping, et al. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 2009, 17(6): 737-744.(in Chinese))
|
[10] |
DAI F C, TU X B, XU C, et al. Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China[J]. Geomorphology, 2011, 132(3/4): 300-318.
|
[11] |
YIN Y P, ZHENG W M, LI X C, et al. Catastrophic landslides associated with the M8. 0 Wenchuan earthquake[J]. Bull Eng Geol Environ, 2011, 70(1): 15-32.
|
[12] |
WANG G H, HUANG R Q, CHIGIRA M, et al. Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M8·0) earthquake, China[J]. Earth Surf Proc Land, 2013, 38(3): 265-274.
|
[13] |
YANG C M, CHENG H Y, TSAO C C. The kinematics and initiation mechanisms of the earthquake-triggered Daguangbao landslide[J]. Geophysical Research Abstracts, V.17,EGU2015-13014-1.
|
[14] |
胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. (HU Ming-jian, WANG Fa-wu, CHENG Qian-gong. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606. (in Chinese))
|
[15] |
黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. (HUANG Run-qiu, PEI Xiang-jun, LI Tian-bin. Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741.(in Chinese))
|
[16] |
许 强, 裴向军, 黄润秋. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009. (XU Qiang, PEI Xiang-jun, HUANG Run-qiu. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing: Science Express, 2009. (in Chinese))
|
[17] |
XING A G, XU Q. GAN J. On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Environ Earth Sci, 2015, 73(7): 3387-3401.
|
[18] |
ZHANG M, YIN Y P, WU S R, et al. Dynamics of the Niumiangou creek rock avalanche triggered by 2008 Ms 8.0 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2011, 8(3): 363-371.
|
[19] |
CHOW T V. Open channel hydraulics[M]. New York: McGraw-Hill, 1959.
|
[20] |
SASSA K. The mechanism starting liquefied landslides and debris flows[C]// Proceedings of 4th International Symposium on Landslides. Toronto, 1984: 349-354.
|
[21] |
SASSA K. Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring-shear apparatus (keynote paper)[C]// 6th InternationalSymposium on Landslides, “Landslides”. Christchurch, 1992: 1919-1937.
|
[22] |
SASSA K. A new intelligent-type dynamic loading ring-shear apparatus[J]. Landslide News, 1997(10): 33.
|
[23] |
SASSA K, FUKUOKA H, WANG G H, et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004, 1(1): 7-19.
|
[24] |
XING A G, WANG G H, LI B, et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in guanling, guizhou, China[J]. Can Geotech, 2014, 52(7): 1-11.
|
[25] |
WANG G H, SASSA K. Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides[J]. Earth Surf Proc Land, 2009, 34(2): 232-241.
|
[26] |
KUENZA K, TOWHATA I, ORENSE R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004 1(3): 185-194.
|
[27] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.
|
[28] |
SASSA K, WANG G H, FUKUOKA H. Performing undrained shear tests on saturated sands in a new intelligent type of ring-shear apparatus[J]. Geotech Test J, 2003, 26(3): 257-265.
|
[29] |
SASSA K, WANG G H, FUKUOKA H, et al. Shear- displacement-amplitude dependent pore-pressure generation in undrained cyclic loading ring shear tests: An energy approach[J]. J Geotech Geoenviron, 2005, 131(6): 750-761.
|
[30] |
TRIFUNAC M D. Energy of strong motion at earthquake source [J]. Soil Dyn Earthq Eng, 2008, 28(1): 1-6.
|
[31] |
TRIFUNAC M D, BRADY A G. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 1975, 65(3): 581-626.
|
[1] | DAI Qian, LIAO Hong-jian, KANG Xiao-sen, DONG Qi. Behaviors of dynamic strain and pore pressure of compacted loess in loess-filled foundation induced by dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 235-240. DOI: 10.11779/CJGE2021S1043 |
[2] | ZHANG Zhen-ying, GUO Wen-qiang, ZHANG Yu-xiang, WU Da-zhi, XU Hui, LIU Kai-fu, CHEN Ping. Shear strength behavior of mechanically-biologically treated waste in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1345-1353. DOI: 10.11779/CJGE201907020 |
[3] | WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, BAI Xiao-yu, YANG Su-chun, SANG Song-kui, YAN Nan. Field tests on excess pore pressure and soil pressure of pile-soil interface for a single pile during pile-sinking in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 950-958. DOI: 10.11779/CJGE201905019 |
[4] | PAN Kun, YANG Zhong-xuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 79-84. DOI: 10.11779/CJGE2017S1016 |
[5] | KONG Gang-qiang, LIU Lu, LIU Han-long, ZHOU Hang. Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. |
[6] | GU Chuan, CAI Yuan-qiang, WANG Jun. Coupling effects of P-waves and S-waves based on cyclic triaxial tests with cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1903-1909. |
[7] | HUANG Bo, WANG Qing-jing, LING Dao-sheng, DING Hao, CHEN Yun-min. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319. |
[8] | HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195. |
[9] | WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538. |
[10] | He Changrong. Dynamic Triaxial Test on Modulus and Damping[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 42-51. |
1. |
刘天翔,朱鸿鹄,吴冰,李豪杰,胡乐乐. 埋入式应变感测光缆-冻土界面渐进破坏机制研究. 岩土力学. 2024(01): 131-140 .
![]() | |
2. |
凌建明,张玉,钱劲松,吴振吉,郑纯宇. 冻融条件下路基温度场和湿度场分布式感知试验. 同济大学学报(自然科学版). 2024(04): 582-591 .
![]() | |
3. |
刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
![]() | |
4. |
刘奇,牛家宝,李青海,赵金海,訾建潇. 采动覆岩裂隙演化的光纤监测耦合性及分带表征. 煤炭学报. 2024(03): 1345-1357 .
![]() | |
5. |
许时昂,张平松,程刚,吴海波,张涛. 砂土压缩变形传感光缆耦合试验分析与预测模型研究. 岩土力学. 2024(05): 1570-1582 .
![]() | |
6. |
张敏捷,李佳康,张峰,裴华富. 基于OFDR技术的分布式光纤–砂土界面耦合性试验与评价模型研究. 岩石力学与工程学报. 2024(S1): 3557-3567 .
![]() | |
7. |
蔡毅,沈华章,黄厚旭,严家平,蔡国军,蔡永祥,杨博,孙斌杨. 厚松散层矿区开采沉陷拉伸区域土体内部变形演化规律研究——以淮北孙疃煤矿为例. 煤炭科学技术. 2024(08): 36-49 .
![]() | |
8. |
史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 .
![]() | |
9. |
张峰,裴华富. 一种用于滑坡位移监测的OFDR测斜仪研发. 中国测试. 2023(01): 119-125 .
![]() | |
10. |
秦仕伟,高磊,钱继奔,韦兵兵,徐中权. 桩基静载过程中OFDR温度补偿试验研究. 河南科学. 2023(04): 547-551 .
![]() | |
11. |
冯奕军,徐浩. 基于光纤温度传感的光缆外层断股高精度监测. 光通信研究. 2023(03): 46-52 .
![]() | |
12. |
刘昊,徐良骥,刘潇鹏,付翔,陈秋影. 基于分布式光纤的矿区非采动沉降规律研究. 安徽理工大学学报(自然科学版). 2023(04): 46-53 .
![]() | |
13. |
吴刚,侯士通,张建,吴京,傅大放,陈力,王庆,田馨. 城市生命线工程安全多层次监测体系与预警技术研究. 土木工程学报. 2023(11): 1-15 .
![]() | |
14. |
徐良骥,曹宗友,刘潇鹏,张坤,刘永琪. 基于分布式光纤的松散含水层失水沉降规律研究. 煤炭科学技术. 2023(10): 231-241 .
![]() | |
15. |
高磊,韩川,黄坚,王洋,周乐. 基于BOTDR的能源桩现场试验与承载特性分析. 岩土力学. 2022(S1): 117-126 .
![]() | |
16. |
张平松,孙斌杨,许时昂,吴荣新,付茂如,甘圣丰,刘畅. 煤系上覆地层移动变形钻孔多参数监测技术. 煤炭学报. 2022(08): 2907-2922 .
![]() | |
17. |
韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
![]() | |
18. |
张郑伟. 忻州窑矿卸压钻孔技术参数研究. 同煤科技. 2021(01): 32-34 .
![]() | |
19. |
何宁,何斌,张宗亮,张中流,周彦章,汪璋淳,郑栋. 蓄水初期红石岩堰塞坝混凝土防渗墙变形与受力分析. 岩土工程学报. 2021(06): 1125-1130 .
![]() | |
20. |
向伏林,杨天亮,顾凯,施斌,刘春,刘苏平,张诚成,姜月华. 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟. 岩土力学. 2021(06): 1743-1754 .
![]() | |
21. |
杨斌. 市政道路加宽工程地基沉降控制方法研究. 市政技术. 2021(03): 17-20 .
![]() | |
22. |
肖菊,段鹏飞. 面向楼宇结构健康的光纤传感网络监测系统研究. 红外与激光工程. 2021(08): 288-294 .
![]() | |
23. |
孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 .
![]() | |
24. |
何斌,何宁,张中流,汪璋淳,胡德新,智月荣. 基于传感光纤技术的堤坝分布式变形监测. 水利水运工程学报. 2021(05): 137-143 .
![]() | |
25. |
王文文,李勇,韩征,李敏. 从T179次列车脱轨事故浅谈构建重大线性工程地质安全监测预警体系. 城市地质. 2020(02): 137-140 .
![]() | |
26. |
侯公羽,李子祥,胡涛,周天赐,肖海林. 植入式光纤传感器在隧道结构中的边界效应研究. 岩土力学. 2020(08): 2839-2850 .
![]() | |
27. |
张中流,何宁,何斌,许滨华,姜彦彬. 基于分布式光纤传感技术的结构受力测量新方法. 仪器仪表学报. 2020(09): 45-55 .
![]() | |
28. |
张诚成,施斌,朱鸿鹄,唐朝生. 分布式光纤探测地裂缝的理论基础探讨. 工程地质学报. 2019(06): 1473-1482 .
![]() |