• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Sheng-hua, PEI Xiang-jun, WANG Gong-hui, HUANG Run-qiu. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. DOI: 10.11779/CJGE201712016
Citation: CUI Sheng-hua, PEI Xiang-jun, WANG Gong-hui, HUANG Run-qiu. Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2268-2277. DOI: 10.11779/CJGE201712016

Initiation of a large landslide triggered by Wenchuan earthquake based on ring shear tests

More Information
  • Received Date: September 27, 2016
  • Published Date: December 24, 2017
  • A great number of landslides were triggered during the 2008 Wenchuan earthquake. Among them, the Niumiangou landslide is the large-scale landslide in the epicenter area. The site investigation shows that the landslide mass collides to the NE side of the valley immediately after initiation. The moving velocity estimated is 19.8 m/s, suggesting the characteristics of high initial velocity. The materials are taken from the source area and a series of ring-shear tests are conducted. The results show that the materials have a high liquefaction potential under undrained condition. They are easy to liquefy and the apparent friction angle is only 9.4° under undrained cyclic loading condition. The liquefaction of the materials in sliding zone during earthquake may cause the initiation with high velocity of Niumiangou landslide. Through an energy approach, the dissipated energy in cyclic loading tests and the possible energy dissipated to the soil layer in the slope by the earthquake are estimated. The peak acceleration for triggering sample failure is 192 gal, and the energy for sample liquefaction is 2.3×104 J/m2. It is inferred that the possible seismic energy that can be dissipated to initiate the slope failure on the source area can be much greater than the value required for the initiation of liquefaction failure. The slope instability might have been occurring several seconds after the arrival of seismic motion.
  • [1]
    殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. (YIN Yue-ping. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese))
    [2]
    BURCHFIEL B C, ROYDEN L H, VAN DER Hilst R D, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China[J]. GSA Today, 2008, 18(7): 4-11.
    [3]
    LI Y Q, JIA D, SHAW J H, et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake: three-dimensional modeling of the Longmen Shan fold-and-thrust belt[J]. J Geophys Res, 2010, 115(B04317): 1-26.
    [4]
    GORUM T, FAN X M, VAN Westen C J, et al. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake[J]. Geomorphology, 2011, 133(3): 152-167.
    [5]
    DAI F C, XU C, YAO X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. J Asian Earth Sci, 2011, 40(4): 883-895.
    [6]
    许 冲, 徐锡伟. 2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3888-3908. (XU Chong, XU Xi-wei. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysis[J]. Chineses Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3888-3908. (in Chinese))
    [7]
    黄润秋, 张伟锋, 裴向军. 大光包滑坡工程地质研究[J]. 工程地质学报, 2014, 22(4): 557-585. (HUANG Run-qiu, ZHANG Wei-feng, PEI Xiang-jun. Engineering geological study on Daguangbao landslide[J]. Journal of Engineering Geology, 2014, 22(4): 557-585. (in Chinese))
    [8]
    黄河清, 赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报, 2010, 18(2): 168-177. (HUANG He-qing, ZHAO Qi-hua. Basic characteristics and preliminary mechanism analysis of large scale rockslide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177. (in Chinese))
    [9]
    孙 萍, 张永双, 殷跃平, 等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报, 2009, 17(6): 737-744. (SUN Ping, ZHANG Yong-shuang, YIN Yue-ping, et al. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 2009, 17(6): 737-744.(in Chinese))
    [10]
    DAI F C, TU X B, XU C, et al. Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China[J]. Geomorphology, 2011, 132(3/4): 300-318.
    [11]
    YIN Y P, ZHENG W M, LI X C, et al. Catastrophic landslides associated with the M8. 0 Wenchuan earthquake[J]. Bull Eng Geol Environ, 2011, 70(1): 15-32.
    [12]
    WANG G H, HUANG R Q, CHIGIRA M, et al. Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M8·0) earthquake, China[J]. Earth Surf Proc Land, 2013, 38(3): 265-274.
    [13]
    YANG C M, CHENG H Y, TSAO C C. The kinematics and initiation mechanisms of the earthquake-triggered Daguangbao landslide[J]. Geophysical Research Abstracts, V.17,EGU2015-13014-1.
    [14]
    胡明鉴, 汪发武, 程谦恭. 基于高速环剪试验易贡巨型滑坡形成原因试验探索[J]. 岩土工程学报, 2009, 31(10): 1602-1606. (HU Ming-jian, WANG Fa-wu, CHENG Qian-gong. Formation of tremendous Yigong landslide based on high-speed shear tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1602-1606. (in Chinese))
    [15]
    黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6): 730-741. (HUANG Run-qiu, PEI Xiang-jun, LI Tian-bin. Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 730-741.(in Chinese))
    [16]
    许 强, 裴向军, 黄润秋. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009. (XU Qiang, PEI Xiang-jun, HUANG Run-qiu. Large-scale landslides induced by the Wenchuan earthquake[M]. Beijing: Science Express, 2009. (in Chinese))
    [17]
    XING A G, XU Q. GAN J. On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Environ Earth Sci, 2015, 73(7): 3387-3401.
    [18]
    ZHANG M, YIN Y P, WU S R, et al. Dynamics of the Niumiangou creek rock avalanche triggered by 2008 Ms 8.0 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2011, 8(3): 363-371.
    [19]
    CHOW T V. Open channel hydraulics[M]. New York: McGraw-Hill, 1959.
    [20]
    SASSA K. The mechanism starting liquefied landslides and debris flows[C]// Proceedings of 4th International Symposium on Landslides. Toronto, 1984: 349-354.
    [21]
    SASSA K. Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring-shear apparatus (keynote paper)[C]// 6th InternationalSymposium on Landslides, “Landslides”. Christchurch, 1992: 1919-1937.
    [22]
    SASSA K. A new intelligent-type dynamic loading ring-shear apparatus[J]. Landslide News, 1997(10): 33.
    [23]
    SASSA K, FUKUOKA H, WANG G H, et al. Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics[J]. Landslides, 2004, 1(1): 7-19.
    [24]
    XING A G, WANG G H, LI B, et al. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in guanling, guizhou, China[J]. Can Geotech, 2014, 52(7): 1-11.
    [25]
    WANG G H, SASSA K. Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides[J]. Earth Surf Proc Land, 2009, 34(2): 232-241.
    [26]
    KUENZA K, TOWHATA I, ORENSE R P, et al. Undrained torsional shear tests on gravelly soils[J]. Landslides, 2004 1(3): 185-194.
    [27]
    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.
    [28]
    SASSA K, WANG G H, FUKUOKA H. Performing undrained shear tests on saturated sands in a new intelligent type of ring-shear apparatus[J]. Geotech Test J, 2003, 26(3): 257-265.
    [29]
    SASSA K, WANG G H, FUKUOKA H, et al. Shear- displacement-amplitude dependent pore-pressure generation in undrained cyclic loading ring shear tests: An energy approach[J]. J Geotech Geoenviron, 2005, 131(6): 750-761.
    [30]
    TRIFUNAC M D. Energy of strong motion at earthquake source [J]. Soil Dyn Earthq Eng, 2008, 28(1): 1-6.
    [31]
    TRIFUNAC M D, BRADY A G. A study on the duration of strong earthquake ground motion[J]. Bull Seismol Soc Am, 1975, 65(3): 581-626.
  • Related Articles

    [1]DAI Qian, LIAO Hong-jian, KANG Xiao-sen, DONG Qi. Behaviors of dynamic strain and pore pressure of compacted loess in loess-filled foundation induced by dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 235-240. DOI: 10.11779/CJGE2021S1043
    [2]ZHANG Zhen-ying, GUO Wen-qiang, ZHANG Yu-xiang, WU Da-zhi, XU Hui, LIU Kai-fu, CHEN Ping. Shear strength behavior of mechanically-biologically treated waste in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1345-1353. DOI: 10.11779/CJGE201907020
    [3]WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, BAI Xiao-yu, YANG Su-chun, SANG Song-kui, YAN Nan. Field tests on excess pore pressure and soil pressure of pile-soil interface for a single pile during pile-sinking in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 950-958. DOI: 10.11779/CJGE201905019
    [4]PAN Kun, YANG Zhong-xuan. Pore pressure characteristics of sand subjected to irregular loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 79-84. DOI: 10.11779/CJGE2017S1016
    [5]KONG Gang-qiang, LIU Lu, LIU Han-long, ZHOU Hang. Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146.
    [6]GU Chuan, CAI Yuan-qiang, WANG Jun. Coupling effects of P-waves and S-waves based on cyclic triaxial tests with cyclic confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1903-1909.
    [7]HUANG Bo, WANG Qing-jing, LING Dao-sheng, DING Hao, CHEN Yun-min. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319.
    [8]HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195.
    [9]WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538.
    [10]He Changrong. Dynamic Triaxial Test on Modulus and Damping[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 42-51.
  • Cited by

    Periodical cited type(28)

    1. 刘天翔,朱鸿鹄,吴冰,李豪杰,胡乐乐. 埋入式应变感测光缆-冻土界面渐进破坏机制研究. 岩土力学. 2024(01): 131-140 .
    2. 凌建明,张玉,钱劲松,吴振吉,郑纯宇. 冻融条件下路基温度场和湿度场分布式感知试验. 同济大学学报(自然科学版). 2024(04): 582-591 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 刘奇,牛家宝,李青海,赵金海,訾建潇. 采动覆岩裂隙演化的光纤监测耦合性及分带表征. 煤炭学报. 2024(03): 1345-1357 .
    5. 许时昂,张平松,程刚,吴海波,张涛. 砂土压缩变形传感光缆耦合试验分析与预测模型研究. 岩土力学. 2024(05): 1570-1582 .
    6. 张敏捷,李佳康,张峰,裴华富. 基于OFDR技术的分布式光纤–砂土界面耦合性试验与评价模型研究. 岩石力学与工程学报. 2024(S1): 3557-3567 .
    7. 蔡毅,沈华章,黄厚旭,严家平,蔡国军,蔡永祥,杨博,孙斌杨. 厚松散层矿区开采沉陷拉伸区域土体内部变形演化规律研究——以淮北孙疃煤矿为例. 煤炭科学技术. 2024(08): 36-49 .
    8. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    9. 张峰,裴华富. 一种用于滑坡位移监测的OFDR测斜仪研发. 中国测试. 2023(01): 119-125 .
    10. 秦仕伟,高磊,钱继奔,韦兵兵,徐中权. 桩基静载过程中OFDR温度补偿试验研究. 河南科学. 2023(04): 547-551 .
    11. 冯奕军,徐浩. 基于光纤温度传感的光缆外层断股高精度监测. 光通信研究. 2023(03): 46-52 .
    12. 刘昊,徐良骥,刘潇鹏,付翔,陈秋影. 基于分布式光纤的矿区非采动沉降规律研究. 安徽理工大学学报(自然科学版). 2023(04): 46-53 .
    13. 吴刚,侯士通,张建,吴京,傅大放,陈力,王庆,田馨. 城市生命线工程安全多层次监测体系与预警技术研究. 土木工程学报. 2023(11): 1-15 .
    14. 徐良骥,曹宗友,刘潇鹏,张坤,刘永琪. 基于分布式光纤的松散含水层失水沉降规律研究. 煤炭科学技术. 2023(10): 231-241 .
    15. 高磊,韩川,黄坚,王洋,周乐. 基于BOTDR的能源桩现场试验与承载特性分析. 岩土力学. 2022(S1): 117-126 .
    16. 张平松,孙斌杨,许时昂,吴荣新,付茂如,甘圣丰,刘畅. 煤系上覆地层移动变形钻孔多参数监测技术. 煤炭学报. 2022(08): 2907-2922 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 张郑伟. 忻州窑矿卸压钻孔技术参数研究. 同煤科技. 2021(01): 32-34 .
    19. 何宁,何斌,张宗亮,张中流,周彦章,汪璋淳,郑栋. 蓄水初期红石岩堰塞坝混凝土防渗墙变形与受力分析. 岩土工程学报. 2021(06): 1125-1130 . 本站查看
    20. 向伏林,杨天亮,顾凯,施斌,刘春,刘苏平,张诚成,姜月华. 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟. 岩土力学. 2021(06): 1743-1754 .
    21. 杨斌. 市政道路加宽工程地基沉降控制方法研究. 市政技术. 2021(03): 17-20 .
    22. 肖菊,段鹏飞. 面向楼宇结构健康的光纤传感网络监测系统研究. 红外与激光工程. 2021(08): 288-294 .
    23. 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 .
    24. 何斌,何宁,张中流,汪璋淳,胡德新,智月荣. 基于传感光纤技术的堤坝分布式变形监测. 水利水运工程学报. 2021(05): 137-143 .
    25. 王文文,李勇,韩征,李敏. 从T179次列车脱轨事故浅谈构建重大线性工程地质安全监测预警体系. 城市地质. 2020(02): 137-140 .
    26. 侯公羽,李子祥,胡涛,周天赐,肖海林. 植入式光纤传感器在隧道结构中的边界效应研究. 岩土力学. 2020(08): 2839-2850 .
    27. 张中流,何宁,何斌,许滨华,姜彦彬. 基于分布式光纤传感技术的结构受力测量新方法. 仪器仪表学报. 2020(09): 45-55 .
    28. 张诚成,施斌,朱鸿鹄,唐朝生. 分布式光纤探测地裂缝的理论基础探讨. 工程地质学报. 2019(06): 1473-1482 .

    Other cited types(9)

Catalog

    Article views (357) PDF downloads (248) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return