• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHENG Peng, LI Jin-hui, SONG Lei. Hydraulic and mechanical characteristics of ecological slopes: experimental study[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1901-1907. DOI: 10.11779/CJGE201710019
Citation: CHENG Peng, LI Jin-hui, SONG Lei. Hydraulic and mechanical characteristics of ecological slopes: experimental study[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1901-1907. DOI: 10.11779/CJGE201710019

Hydraulic and mechanical characteristics of ecological slopes: experimental study

More Information
  • Received Date: June 29, 2016
  • Published Date: October 24, 2017
  • The biotechnical slope protection is a new method to protect slopes, which helps to prevent and control landslide. However, the vegetation roots can increase the permeability and pore water pressure of soils, which in turn decrease the shear strength of soils under rainfall conditions. On the other hand, the roots can be viewed as fibers in the soils and may increase the strength of soils. The controversial effect of roots on the soils remains unclear. The hydraulic and mechanical characteristics are analyzed through field monitoring combined with triaxial compression tests. Firstly, three soil regions (with Vetiver grass, with Bermuda grass and bare soil) are prepared in the field. The monitoring of volumetric water content and matric suction begins after these regions experience natural drying-wetting cycles for one year and a half. The unsaturated permeability functions for the three soils are calculated using the monitored data. Secondly, the soils are sampled from the field and used to conduct trixial tests in lab. The stress-strain curves for the soils with Vetiver roots, the soils with Bermuda, the bare soils and the compacted soils are investigated. The cohesions and friction angles of soils are obtained. The results may provide necessary data in the stability analysis of ecological slopes.
  • [1]
    饶运章. 岩土边坡稳定性分析[M]. 长沙: 中南大学出版社, 2012. (YAO Yun-zhang. Stability analysis of geotechnical slope[M]. Changsha: Central South University Press, 2012. (in Chinese))
    [2]
    周德培, 张俊云. 植被护坡工程技术[M]. 北京:北京人民交通出版社, 2003: 30-36. (ZHOU De-pei, ZHANG Jun-yun. Vegetation slope protection engineering technology [M]. Beijing: Beijing People's Communications Press, 2003: 30-36. (in Chinese))
    [3]
    杨俊杰, 王 亮, 郑建国, 等. 生态边坡客土稳定性研究[J]. 岩石力学与工程学报, 2006, 25(2): 414-422. (YANG Jun-jie, WANG Liang, ZHENG Jian-guo, et al. Study on stability of replace with out-soil in ecological slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 414-422. (in Chinese))
    [4]
    戚国庆, 胡利文. 植被护坡机制及应用研究[J]. 岩石力学与工程学报, 2006, 25(11): 2220-2225. (QI Guo-qing, HU Li-wen. Study on mechanism and application of slope protection with vegetation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2220-2225. (in Chinese))
    [5]
    周 跃, WATTS D. 欧美坡面生态工程原理及应用的发展现状[J]. 土壤侵蚀与水土保持学报, 1999, 5(1): 80-86. (ZHOU Yue, WATTS D. Current development of slope eco-engineering principle and application in Europe and America[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(1): 80-86. (in Chinese))
    [6]
    ANGERS D A, CARON J. Plant-induced changes in soil structure: processes and feedbacks[J]. Biogeochemistry, 1998, 42(4): 55-72.
    [7]
    MEEK B D, DETAR W R, RECHEL E R, et al. Infiltration rate as affected by an alfalfa and no-tile cotton dropping system[J]. Soil Science American Journal, 1990, 54(2): 505-508.
    [8]
    李雄威, 孔令伟, 郭爱国. 植被作用下膨胀土渗透和力学特性及堑坡防护机制[J]. 岩土力学, 2013, 34(1): 85-91. (LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Permeability and mechanical characteristics of expansive soil and cut slope protection mechanism under vegetation action[J]. Rock and Soil Mechanics, 2013, 34(1): 85-91. (in Chinese))
    [9]
    DEVITT D A, SMITH S D. Root channel macropores enhance downward movement of water in a mojave desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99-108.
    [10]
    周云艳, 陈建平, 王晓梅. 植被护坡中植物根系的阻裂增强机理研究[J]. 武汉大学学报(理学版), 2009, 55(3): 613-618. (ZHOU Yun-yan, CHEN Jian-ping, WANG Xiao-mei. Research on resistance cracking and enhancement mechanism of plant root in slope protection by vegetation[J]. Journal of Wuhan University: Natural Science Edition, 2009, 55(3): 613-618. (in Chinese))
    [11]
    ALBRIGHT W H, BENSON C H, GEE G W, et al. Field water balance of landfill final covers[J]. Journal of Environmental Quality, 2004, 33: 2317-2332.
    [12]
    BOHNHOFF G L, OGORZALEK A S, BENSON C H. Field data and water-balance predictions for a monolithic cover in a semiarid climate[J]. Journal of Geotechnical and Geo-environmental Engineering, 2009, 135(3): 333-348.
    [13]
    FAYER M J, GEE G W. Multiple-year water balance of soil covers in a semiarid setting[J]. Journal of Environmental Quality, 2006, 35(1): 366-377.
    [14]
    BARNSWELL K D, DWYER D F. Assessing the performance of evapotranspiration covers for municipal solid waste landfills in northwestern Ohio[J]. Journal of Environmental Engineering, 2011, 137: 301-305.
    [15]
    WILLIAM E S, MUNK J, WILLIAM J L. Four-year performance evaluation of a pilot-scale evapotranspiration landfill cover in southcentral Alaska[J]. Cold Regions Science and Technology, 2012(82): 1-7.
    [16]
    王 康, 刘川顺, 王富庆, 等. 腾发覆盖垃圾填埋场覆盖层机理试验研究及结构分析[J]. 环境科学, 2007, 28(10): 2307-2314. (WANG Kang, LIU Chuan-shun, WANG Fu-qing, et al. Field test and evaluation of landfill performance and structure with evapotranspiration cover[J]. Environmental Science, 2007, 28(10): 2307-2314. (in Chinese))
    [17]
    栗岳洲, 付江涛, 胡夏嵩, 等. 土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 403-412. (LI Yue-zhou, FU Jiang-tao, HU Xia-song, et al. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 403-412. (in Chinese))
    [18]
    陈昌富, 刘怀星, 李亚平. 草根加筋土的室内三轴试验研究[J]. 岩土力学, 2007, 28(10): 2041-2045. (CHEN Chang-fu, LIU Huai-xing, LI Ya-ping. Study on grassroots- reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics, 2007, 28(10): 2041-2045. (in Chinese))
    [19]
    刘秀萍, 陈丽华, 宋维峰. 林木根系与黄土复合体的抗剪强度试验研究[J]. 北京林业大学学报, 2006, 28(5): 67-72. (LIU Xiu-ping, CHEN Li-hua, SONG Wei-feng. Study on the shear strength of forest root-loess composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 67-72. (in Chinese))
    [20]
    王元战, 张智凯, 马殿光, 等. 植物根系加筋土剪切试验研究综述[J]. 水道港口, 2012, 33(4): 330-336. (WANG Yuan-zhan, ZHANG Zhi-kai, MA Dian-guang, et al. Review of shear test investigation on plant roots-reinforced soil[J]. Journal of Waterway and Harbor, 2012, 33(4): 330-336. (in Chinese))
    [21]
    陈 锐, 陈中奎, 张 敏, 等. 新型高量程张力计在吸力量测中的应用[J]. 水利学报, 2013, 44(6): 743-747. (CHEN Rui, CHEN Zhong-kui, ZHANG Min, et al. Applications of a high-capacity tensiometer for direct measurement of suction [J]. Journal of Hydraulic Engineering, 2013, 44(6): 743-747. (in Chinese))
    [22]
    FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993: 151-152.
    [23]
    SCHINDLER U, MULLER L. Simplifying the evaporation method for quantifying soil hydraulic properties[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 623-629.
    [24]
    周 腾. 含根系土体水力特性的试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 53-57. (ZHOU Teng. Experimental and theoretical research of hydraulic properties of root-containing soil[D]. Harbin: Harbin Institute of Technology, 2015: 53-57. (in Chinese ))
    [25]
    ASTM (2003c) D 7015-03 Standard practices for obtaining undisturbed block (cubical and cylindrical) samples of soils[S]. Annual Book of Standards, ASTM International, West Conshohocken, PA, 2003.
    [26]
    魏华炜, 罗海波, 张玉环. 狗牙根根系分布特征及其抗拉强度试验研究[J]. 水土保持通报, 2011, 31(4): 185-189. (WEI Hua-wei, LUO Hai-bo, ZHANG Yu-huan. Root distribution characteristics and tensile strength of Cynodon Dactylon L[J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 185-189. (in Chinese))
    [27]
    刘川顺, 吴洪亮, 张 路. 香根草根土复合体抗剪强度试验研究[J]. 武汉大学学报(工学版), 2012, 45(5): 580-583. (LIU Chuan-shun, WU Hong-liang, ZHANG Lu. Experimental study of shear strength of soil rooted with vetiver roots[J]. Engineering Journal of Wuhan University, 2012, 45(5): 580-583. (in Chinese))
    [28]
    黄 金. 香根草生物工程技术在浅层滑坡治理中的应用研究[D]. 重庆: 重庆交通大学, 2010: 49-59. (HUANG Jin. The research on applying Vetiver zizanioides bio-engineering technique to curb slope surface[D]. Chongqiong: Chongqiong Jiaotong University, 2010: 49-59. (in Chinese))
    [29]
    赵 亮. 根土复合体抗剪强度试验研究[D]. 长沙: 中南林业科技大学, 2014: 37-42. (ZHAO Liang. Experimental study on shear strength of root-soil composite[D]. Changsha: Central South University of Forestry & Technology, 2014: 37-42. (in Chinese))
    [30]
    DOCKER B B. Biotechnical engineering on alluvial riverbanks of southeastern Australia: a quantified model of the earth-reinforcing properties of some native riparian trees[D]. Sydney: The University of Sydney, 2003.
    [31]
    LEUNG T Y F. Native shrubs and trees as an integrated element in local slope upgrading[D]. Hong Kong, The University of Hong Kong, 2014.
    [32]
    HU X S, BRIERLEY G, ZHU H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013: 10(4): 668-686.
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return