Citation: | CHENG Peng, LI Jin-hui, SONG Lei. Hydraulic and mechanical characteristics of ecological slopes: experimental study[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1901-1907. DOI: 10.11779/CJGE201710019 |
[1] |
饶运章. 岩土边坡稳定性分析[M]. 长沙: 中南大学出版社, 2012. (YAO Yun-zhang. Stability analysis of geotechnical slope[M]. Changsha: Central South University Press, 2012. (in Chinese))
|
[2] |
周德培, 张俊云. 植被护坡工程技术[M]. 北京:北京人民交通出版社, 2003: 30-36. (ZHOU De-pei, ZHANG Jun-yun. Vegetation slope protection engineering technology [M]. Beijing: Beijing People's Communications Press, 2003: 30-36. (in Chinese))
|
[3] |
杨俊杰, 王 亮, 郑建国, 等. 生态边坡客土稳定性研究[J]. 岩石力学与工程学报, 2006, 25(2): 414-422. (YANG Jun-jie, WANG Liang, ZHENG Jian-guo, et al. Study on stability of replace with out-soil in ecological slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 414-422. (in Chinese))
|
[4] |
戚国庆, 胡利文. 植被护坡机制及应用研究[J]. 岩石力学与工程学报, 2006, 25(11): 2220-2225. (QI Guo-qing, HU Li-wen. Study on mechanism and application of slope protection with vegetation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2220-2225. (in Chinese))
|
[5] |
周 跃, WATTS D. 欧美坡面生态工程原理及应用的发展现状[J]. 土壤侵蚀与水土保持学报, 1999, 5(1): 80-86. (ZHOU Yue, WATTS D. Current development of slope eco-engineering principle and application in Europe and America[J]. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(1): 80-86. (in Chinese))
|
[6] |
ANGERS D A, CARON J. Plant-induced changes in soil structure: processes and feedbacks[J]. Biogeochemistry, 1998, 42(4): 55-72.
|
[7] |
MEEK B D, DETAR W R, RECHEL E R, et al. Infiltration rate as affected by an alfalfa and no-tile cotton dropping system[J]. Soil Science American Journal, 1990, 54(2): 505-508.
|
[8] |
李雄威, 孔令伟, 郭爱国. 植被作用下膨胀土渗透和力学特性及堑坡防护机制[J]. 岩土力学, 2013, 34(1): 85-91. (LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Permeability and mechanical characteristics of expansive soil and cut slope protection mechanism under vegetation action[J]. Rock and Soil Mechanics, 2013, 34(1): 85-91. (in Chinese))
|
[9] |
DEVITT D A, SMITH S D. Root channel macropores enhance downward movement of water in a mojave desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99-108.
|
[10] |
周云艳, 陈建平, 王晓梅. 植被护坡中植物根系的阻裂增强机理研究[J]. 武汉大学学报(理学版), 2009, 55(3): 613-618. (ZHOU Yun-yan, CHEN Jian-ping, WANG Xiao-mei. Research on resistance cracking and enhancement mechanism of plant root in slope protection by vegetation[J]. Journal of Wuhan University: Natural Science Edition, 2009, 55(3): 613-618. (in Chinese))
|
[11] |
ALBRIGHT W H, BENSON C H, GEE G W, et al. Field water balance of landfill final covers[J]. Journal of Environmental Quality, 2004, 33: 2317-2332.
|
[12] |
BOHNHOFF G L, OGORZALEK A S, BENSON C H. Field data and water-balance predictions for a monolithic cover in a semiarid climate[J]. Journal of Geotechnical and Geo-environmental Engineering, 2009, 135(3): 333-348.
|
[13] |
FAYER M J, GEE G W. Multiple-year water balance of soil covers in a semiarid setting[J]. Journal of Environmental Quality, 2006, 35(1): 366-377.
|
[14] |
BARNSWELL K D, DWYER D F. Assessing the performance of evapotranspiration covers for municipal solid waste landfills in northwestern Ohio[J]. Journal of Environmental Engineering, 2011, 137: 301-305.
|
[15] |
WILLIAM E S, MUNK J, WILLIAM J L. Four-year performance evaluation of a pilot-scale evapotranspiration landfill cover in southcentral Alaska[J]. Cold Regions Science and Technology, 2012(82): 1-7.
|
[16] |
王 康, 刘川顺, 王富庆, 等. 腾发覆盖垃圾填埋场覆盖层机理试验研究及结构分析[J]. 环境科学, 2007, 28(10): 2307-2314. (WANG Kang, LIU Chuan-shun, WANG Fu-qing, et al. Field test and evaluation of landfill performance and structure with evapotranspiration cover[J]. Environmental Science, 2007, 28(10): 2307-2314. (in Chinese))
|
[17] |
栗岳洲, 付江涛, 胡夏嵩, 等. 土体粒径对盐生植物根-土复合体抗剪强度影响的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 403-412. (LI Yue-zhou, FU Jiang-tao, HU Xia-song, et al. Experimental study of the influence of grain size on the shear strength of rooted soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 403-412. (in Chinese))
|
[18] |
陈昌富, 刘怀星, 李亚平. 草根加筋土的室内三轴试验研究[J]. 岩土力学, 2007, 28(10): 2041-2045. (CHEN Chang-fu, LIU Huai-xing, LI Ya-ping. Study on grassroots- reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics, 2007, 28(10): 2041-2045. (in Chinese))
|
[19] |
刘秀萍, 陈丽华, 宋维峰. 林木根系与黄土复合体的抗剪强度试验研究[J]. 北京林业大学学报, 2006, 28(5): 67-72. (LIU Xiu-ping, CHEN Li-hua, SONG Wei-feng. Study on the shear strength of forest root-loess composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 67-72. (in Chinese))
|
[20] |
王元战, 张智凯, 马殿光, 等. 植物根系加筋土剪切试验研究综述[J]. 水道港口, 2012, 33(4): 330-336. (WANG Yuan-zhan, ZHANG Zhi-kai, MA Dian-guang, et al. Review of shear test investigation on plant roots-reinforced soil[J]. Journal of Waterway and Harbor, 2012, 33(4): 330-336. (in Chinese))
|
[21] |
陈 锐, 陈中奎, 张 敏, 等. 新型高量程张力计在吸力量测中的应用[J]. 水利学报, 2013, 44(6): 743-747. (CHEN Rui, CHEN Zhong-kui, ZHANG Min, et al. Applications of a high-capacity tensiometer for direct measurement of suction [J]. Journal of Hydraulic Engineering, 2013, 44(6): 743-747. (in Chinese))
|
[22] |
FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons, 1993: 151-152.
|
[23] |
SCHINDLER U, MULLER L. Simplifying the evaporation method for quantifying soil hydraulic properties[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5): 623-629.
|
[24] |
周 腾. 含根系土体水力特性的试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 53-57. (ZHOU Teng. Experimental and theoretical research of hydraulic properties of root-containing soil[D]. Harbin: Harbin Institute of Technology, 2015: 53-57. (in Chinese ))
|
[25] |
ASTM (2003c) D 7015-03 Standard practices for obtaining undisturbed block (cubical and cylindrical) samples of soils[S]. Annual Book of Standards, ASTM International, West Conshohocken, PA, 2003.
|
[26] |
魏华炜, 罗海波, 张玉环. 狗牙根根系分布特征及其抗拉强度试验研究[J]. 水土保持通报, 2011, 31(4): 185-189. (WEI Hua-wei, LUO Hai-bo, ZHANG Yu-huan. Root distribution characteristics and tensile strength of Cynodon Dactylon L[J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 185-189. (in Chinese))
|
[27] |
刘川顺, 吴洪亮, 张 路. 香根草根土复合体抗剪强度试验研究[J]. 武汉大学学报(工学版), 2012, 45(5): 580-583. (LIU Chuan-shun, WU Hong-liang, ZHANG Lu. Experimental study of shear strength of soil rooted with vetiver roots[J]. Engineering Journal of Wuhan University, 2012, 45(5): 580-583. (in Chinese))
|
[28] |
黄 金. 香根草生物工程技术在浅层滑坡治理中的应用研究[D]. 重庆: 重庆交通大学, 2010: 49-59. (HUANG Jin. The research on applying Vetiver zizanioides bio-engineering technique to curb slope surface[D]. Chongqiong: Chongqiong Jiaotong University, 2010: 49-59. (in Chinese))
|
[29] |
赵 亮. 根土复合体抗剪强度试验研究[D]. 长沙: 中南林业科技大学, 2014: 37-42. (ZHAO Liang. Experimental study on shear strength of root-soil composite[D]. Changsha: Central South University of Forestry & Technology, 2014: 37-42. (in Chinese))
|
[30] |
DOCKER B B. Biotechnical engineering on alluvial riverbanks of southeastern Australia: a quantified model of the earth-reinforcing properties of some native riparian trees[D]. Sydney: The University of Sydney, 2003.
|
[31] |
LEUNG T Y F. Native shrubs and trees as an integrated element in local slope upgrading[D]. Hong Kong, The University of Hong Kong, 2014.
|
[32] |
HU X S, BRIERLEY G, ZHU H L, et al. An exploratory analysis of vegetation strategies to reduce shallow landslide activity on loess hillslopes, Northeast Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2013: 10(4): 668-686.
|
[1] | LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228 |
[2] | JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021 |
[6] | HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019 |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[8] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[9] | Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799. |
[10] | XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402. |