• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Fu, PAN Qiu-jing, LING Tong-hua. Upper bound analysis of factor of safety for shield tunnel face subjected to underground water seepage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1461-1469. DOI: 10.11779/CJGE201708013
Citation: HUANG Fu, PAN Qiu-jing, LING Tong-hua. Upper bound analysis of factor of safety for shield tunnel face subjected to underground water seepage[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1461-1469. DOI: 10.11779/CJGE201708013

Upper bound analysis of factor of safety for shield tunnel face subjected to underground water seepage

More Information
  • Received Date: May 16, 2016
  • Published Date: August 24, 2017
  • Based on the numerical simulation technique, the seepage fields of shield tunnel face are simulated, and the pore water pressures of the nodes adjacent to the tunnel face are obtained. Using the pore pressures of the nodes, the work rate of the pore pressures of the upper bound failure mechanism is derived. The work rate of the pore pressures regarded as a work rate of external force is included in the equation for virtual work rate, and the objective function for factor of safety for tunnel face is established in the framework of upper bound theorem. Using the nonlinear sequential quadratic programming, the upper bound solution of the factor of safety is obtained. By comparing the solution with the results derived from strength reduction method, the validation of the proposed method is verified. Moreover, this method is applied to a shield tunnel which takes account of the effect of seepage to investigate the stability of the tunnel face. The study indicates the factor of safety for tunnel face increases with the increase of cohesion, friction angle and supporting pressure, but decreases with the increase of underground water level. The failure range of the tunnel face decreases with the increase of friction angle observably, but the underground water level has slight influence on the failure range of the tunnel face.
  • [1]
    MOLLON G, DIAS D, SOUBRA A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1363-1388.
    [2]
    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(1): 215-229.
    [3]
    PAN Q J, DIAS D. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach[J]. International Journal of Geomechanics, 2015, 16(3): 04015076.
    [4]
    张 箭, 杨 峰, 刘 志, 等. 浅覆盾构隧道开挖面挤出刚性锥体破坏模式极限分析[J]. 岩土工程学报, 2013, 36(7): 1344-1349. (ZHANG Jian, YANG Feng, LIU Zhi, et al. Three-dimensional limit analysis of blow-out failure modes of shallow shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 36(7): 1344-1349. (in Chinese))
    [5]
    LEE I M, LEE J S, NAM S W. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 551-565.
    [6]
    王浩然, 黄茂松, 吕玺琳, 等. 考虑渗流影响的盾构隧道开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(9): 1696-1704. (WANG Hao-Ran, HUANG Mao-Song, LÜ Xi-Lin, et al. Upper-bound limit analysis of stability of shield tunnel face considering seepage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1696-1704. (in Chinese))
    [7]
    PERAZZELLI P, LEONE T, ANAGNOSTOU G. Tunnel face stability under seepage flow conditions[J]. Tunnelling and Underground Space Technology, 2014, 43: 459-469.
    [8]
    VIRATJANDR C, MICHALOWSKI R L. Limit analysis of submerged slopes subjected to water drawdown[J]. Canadian Geotechnical Journal, 2006, 43(8): 802-814.
    [9]
    MOLLON G, PHOON K K, DIAS D, et al. Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand[J]. Journal of Engineering Mechanics, 2011, 137(1): 8-21.
    [10]
    SAADA Z, MAGHOUS S, GARNIER D. Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55: 45-54.
    [11]
    DE BUHAN P,CUVILLIER A,DORMIEUX L,et al. Face stability of shallow circular tunnels driven under the water table: a numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(1): 79-95.
    [12]
    陈力华, 靳晓光. 有限元强度折减法中边坡三种失效判据的适用性研究[J]. 土木工程学报, 2012, 45(9): 136-146. (CHEN Li-Hua, JIN Xiao-Guang. Study on the applicability of three criteria for slope instability using finite element strength reduction method[J]. China Civil Engineering Journal, 2012, 45(9): 136-146. (in Chinese))
    [13]
    李秀地, 郑颖人, 袁 勇, 等. 沉管海底隧道强度折减法分析探讨[J]. 岩土工程学报, 2013, 35(10): 1876-1882. (LI Xiu-di, ZHENG Ying-ren, YUAN Yong, et al. Strength reduction method for submarine immersed tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1876-1882. (in Chinese))
    [14]
    陈国庆, 黄润秋, 石豫川, 等. 基于动态和整体强度折减法的边坡稳定性分析[J]. 岩石力学与工程学报, 2014, 33(2): 243-256. (CHEN Guo-qing, HUANG Run-qiu, SHI Yu-chuan, et al. Stability analysis of slope based on dynamic and whole strength reduction methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 243-256. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return