• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin-rong, TU Yi-liang, WANG Peng, ZHONG Zu-liang, TANG Wen-bin, DU Li-bing. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009
Citation: LIU Xin-rong, TU Yi-liang, WANG Peng, ZHONG Zu-liang, TANG Wen-bin, DU Li-bing. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. DOI: 10.11779/CJGE201708009

Particle breakage of soil-rock aggregate based on large-scale direct shear tests

More Information
  • Received Date: May 22, 2016
  • Published Date: August 24, 2017
  • In the direct shear tests on soil-rock aggregate (SRA), particle breakage occurs in micro vision, which will influence its macro mechanical properties. On this basis, the laboratory large-scale direct shear tests and sieving analysis tests are conducted for SRA with four kinds of moisture contents. The particle breakage is analyzed based on the test results, and the connection between the micro particle breakage and the macro mechanical properties is established, which can eventually deepen engineers’ understanding of macro mechanical properties. The results show that: (1) The particle breakage appears to be obvious after shear tests, which can be divided into three types, i.e. complete-cut type, surface-ruptured type and surface-grinded type; (2) In micro vision, the particle breakage is characterized by decreasing coarse particles, increasing fine particles and fluctuation content of medium particles. In statistics, for the particle breakage, the grading curve is upward and in macro aspect, “jumping” occurs in the shear stress-shear displacement curves, the strength of SRA is of nonlinear characteristics, and the SRA with low, high and medium moisture contents exhibits strained softening, strained hardening and plastic-strain failure models. In fact, the particle breakage results from the stress concentration of particles by touching with each other; (3) Either the decrease of moisture content or the increase of normal pressure will cause the ratio of particles breakage to increase; (4) Both the cohesion and the internal friction angle decrease like power function with the increasing moisture content.
  • [1]
    钟祖良, 涂义亮, 何晓勇, 等. 土石混合体物理指标及强度特性研究进展[J]. 地下空间与工程学报, 2016, 12(4): 952-961. (ZHONG Zu-liang, TU Yi-liang, HE Xiao-yong, et al. Research progress on physical index and strength characteristics of bimsoils[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 952-961. (in Chinese))
    [2]
    张坤勇. 土石混合料路基填筑关键技术[J]. 西部探矿工程, 2006, 18(B06): 409-411. (ZHANG Kun-yong. The key technology for filling subgrade using soil-rock aggregate[J]. West-China Exploration Engineering, 2006, 18(B06): 409-411. (in Chinese))
    [3]
    李 晓, 廖秋林, 赫建明, 等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 26(12): 2377-2384. (LI Xiao, LIAO Qiu-lin, HE Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2377-2384. (in Chinese))
    [4]
    COLI N, BERRY P, BOLDINI D. In situ non-conventional shear tests for the mechanical characterization of a bimrock (BimTest)[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 95-102.
    [5]
    舒志乐, 刘保县, 梁宁慧, 等. 基于数字图像处理的土石体粗料分形特性研究[J]. 地下空间与工程学报, 2012, 8(3): 511-516. (SHU Zhi-le, LIU Bao-xian, LIANG Ning-hui, et al. Study on the fractal characteristics of earth-rock coarse grain based on digital image processing[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 511-516. (in Chinese))
    [6]
    舒志乐, 刘新荣, 刘保县. 基于分形理论的土石混合体强度特征研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2652-2656. (SHU Zhi-le, LIU Xin-rong, LIU Bao-xian. Study of strength properties of earth-rock aggregate based on fractals[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2652-2656. (in Chinese))
    [7]
    徐文杰, 胡瑞林, 岳中琦. 基于数字图像分析及大型直剪试验的土石混合体块石含量与抗剪强度关系研究[J]. 岩石力学与工程学报, 2008, 27(5): 996-1007. (XU Wen-jie, HU Rui-lin, YUE Zhong-qi. Research on relationship between rock block proportion and shear strength of soil-rock mixtures based on digital image analysis and large direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 996-1007. (in Chinese))
    [8]
    田恒蛟, 薛亚东. 路用土石混合料的剪切特性试验研究[J].地下空间与工程学报, 2010, 10(1): 30-35. (TIAN Heng-jiao, XUE Ya-dong. Experimental search on shear behavior of soil-rock mixture for road construction[J]. Chinese Journal of Underground Space and Engineering, 2010, 10(1): 30-35. (in Chinese))
    [9]
    KALENDER A, SONMEZ H, MEDLEY E. An approach to predicting the overall strengths of unwelded bimrock sand bimsoils[J]. Engineering Geology, 2014, 183: 65-79.
    [10]
    魏厚振, 汪 稔, 胡明鉴, 等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学, 2008, 29(1): 48-57. (WEI Hou-zhen, WANG Ren, HU Ming-jian, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou Ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48-57. (in Chinese))
    [11]
    李维树, 丁秀丽, 邬爱清, 等. 蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J]. 岩土力学, 2007, 28(7): 1338-1342. (LI Wei-shu, DING Xiu-li, WU Ai-qing, et al. Shear strength degeneration of soil and rock mixture in Three Gorges Reservoir bank slopes under influence of impounding[J]. Rock and Soil Mechanics, 2007, 28(7): 1338-1342. (in Chinese))
    [12]
    邓华锋, 原先凡, 李建林, 等. 土石混合体直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4065-4072. (DENG Hua-feng, YUAN Xian-fan, LI Jian-lin, et al. Research on failure characteristics and determination method for shear strength of soil-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4065-4072. (in Chinese))
    [13]
    徐文杰, 胡瑞林, 曾如意. 水下土石混合体的原位大型水平推剪试验研究[J]. 岩土工程学报, 2006, 28(7): 814-818. (XU Wen-jie, HU Rui-lin, ZENG Ru-yi. Research on horizontal push-shear in-situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 814-818. (in Chinese))
    [14]
    XU W J, HU R L, TAN R J. Some geomechanical properties of soil-rock mixtures in Tiger-leaping Gorge Area, China[J]. Géotechnique, 2007, 57(3): 255-264.
    [15]
    王江营, 曹文贵, 张 超. 基于正交设计的复杂环境下土石混填体大型直剪试验研究[J]. 岩土工程学报, 2013, 35(10): 1849-1856. (WANG Jiang-ying, CAO Wen-gui, ZHANG Chao. Large-scale direct shear tests on soil-rock aggregate mixture under complicated environment based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1849-1856. (in Chinese))
    [16]
    LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30: 307-333.
    [17]
    SL237—1999 土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [18]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192.
    [19]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese))
    [20]
    张坤勇, 殷宗泽, 朱俊高. 堆石坝坝坡非线性稳定性分析[J]. 西部探矿工程, 2006, 18(21): 212-215. (ZHANG Kun-yong, YING Zong-ze, ZHU Jun-gao. Analysis of nonlinear stability of slope in Rock-fill dam[J]. West-China Exploration Engineering, 2006, 18(21): 212-215. (in Chinese))
    [21]
    陈生水. 土石坝试验新技术研究与应用[J]. 岩土工程学报, 2015, 37(1): 1-28. (CHEN Sheng-shui. Experimental techniques for earth and rockfill dams and their applications[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 1-28. (in Chinese))
  • Related Articles

    [1]YU Haitao, XU Hualin, WEI Yibo. Seismic fragility analysis method for evaluation of dislocation resistance of tunnels crossing active fault zones[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2060-2068. DOI: 10.11779/CJGE20230610
    [2]PENG Rui, OUYANG Zhen-hua, MENG Xiang-rui, ZHAO Guang-ming, ZHAO Qi-feng, SHI Jian-jun, FENG Ji-cheng. Acoustic emission testing of nonuniform stress in strata near reverse faults and numerical analysis of stability of roadways[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 509-518. DOI: 10.11779/CJGE201903013
    [3]ZHANG Pei-sen, YAN Wei, ZHANG Wen-quan, SHEN Baotang. Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 877-889. DOI: 10.11779/CJGE201605013
    [4]YU Bo, FENG Tu-gen, XIONG Zhong-hua. Total stress approach for stability of seabed under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 905-909. DOI: 10.11779/CJGE201405014
    [5]XU Xinghua, SHANG Yuequan. Integrated zonation of landslide stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 669-674.
    [6]ZHAO Haijun, MA Fengshan, LI Guoqing, DING Demin, WEN Youdao. Fault effect due to underground excavation in hangingwalls and footwalls of faults[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1372-1375.
    [7]MA Chongwu, MU Qingsong, XU Youji, MIAO Ti. Yield process of the 1150-m horizontal jamb in Jinchuan No. 2 Mine area[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 361-365.
    [8]YAN Zhiguo, ZHU Hehua, LI Xiangyang, LIU Xuezeng, XU Zhihua. 3D-FEM analysis on stability of shaft with conduit jacked synchronously in two directions[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 891-896.
    [9]LIU Zhikui, LIANG Jingcheng, ZHU Shouzeng, ZHANG Guilin. Stability analysis of rock foundation with cave in karst area[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 629-633.
    [10]Zhang Fucun. Engineering Geological Evaluation of the Site of Electron-Positron-Collision Machine at Beijing(BEPC)[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(2): 69-74.
  • Cited by

    Periodical cited type(18)

    1. 张国强,崔臻,颜天佑,张茂础,李建贺. 大埋深调水隧洞穿越活动断裂带变形破坏特征及适应性措施. 长江科学院院报. 2025(01): 152-161 .
    2. 杨继华,崔臻,万伟锋,刘振红,郭卫新. 引黄济宁工程隧洞穿越活动性断裂响应特征研究. 地下空间与工程学报. 2025(01): 283-292 .
    3. 王湃,王康,刘清,杨磊,屠文锋,王小龙,杨洋. 考虑保护层特性与重车偏压影响的引水隧洞底板混凝土受力变形特征. 科学技术与工程. 2025(07): 2931-2942 .
    4. 刘振国,王蓥森,郑长洲. 塑性混凝土防渗墙成槽与基坑开挖数值分析. 三峡大学学报(自然科学版). 2025(02): 1-11 .
    5. 张延杰,浦仕江,周辉,王锦国,吴顺川,丁秀丽. 滇中引水工程安全建设与高效运行关键技术研究若干进展——地下工程. 岩石力学与工程学报. 2024(02): 333-357 .
    6. 刘人太,马晨阳,杨磊,王博,马红均,陈孟军,马婉琳,屠文锋,鹿伟,谢云鹏. 一种兼具渗透与劈裂功能的复合注浆材料研发与现场试验. 岩石力学与工程学报. 2024(S2): 3651-3667 .
    7. 涂颖,晏育松,杨建华,章伟鹏,刘达. 深埋隧洞爆破开挖围岩振动能量分布特征与预测. 长安大学学报(自然科学版). 2023(01): 62-71 .
    8. 鲁瑞,冯现大,舒金会,吴文俊,李树忱. 大跨度变截面隧道围岩及中岩柱的稳定性. 济南大学学报(自然科学版). 2023(02): 241-246 .
    9. 卢玉斌,池磊,颜仁富. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应. 工程技术研究. 2023(06): 17-19 .
    10. 司晓丽,雷军,谢金池,贾锋,赵书涛,聂金诚. 跨程海活动断裂带隧址区的地应力特征分析. 四川建筑. 2023(03): 154-157 .
    11. 李会芳,赵密,杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件. 工程力学. 2022(05): 55-64 .
    12. 王淑娟. 跨断层深海隧道衬砌变形规律及加固措施研究. 水利与建筑工程学报. 2022(03): 67-75 .
    13. 韩钢,黄书岭,丁秀丽,马旭强,张雨霆,何军. 香炉山隧洞5#支洞应急抢险段围岩参数反演及稳定性分析. 长江科学院院报. 2022(12): 56-61+67 .
    14. 周辉,赵海涛,李坚,赵成伟,刘文博,张传庆,王艳张. 香炉山隧洞龙蟠—乔后断裂带西支蠕滑特性与位错模式. 长江科学院院报. 2022(12): 97-104 .
    15. 韩晓玉,董志宏,付平,刘元坤. 基于HI应变计的首次断裂带岩体地应力监测. 长江科学院院报. 2022(12): 1-7 .
    16. 吕情绪. 保德煤矿地应力测试及分布特征分析. 煤矿机械. 2021(08): 99-102 .
    17. 洪开荣,冯欢欢. 近2年我国隧道及地下工程发展与思考(2019—2020年). 隧道建设(中英文). 2021(08): 1259-1280 .
    18. 亓文斌,田春艳,王飞飞,孟中华. 采矿引起地表塌陷过程中的地应力转移演化规律研究. 有色金属工程. 2021(12): 86-92 .

    Other cited types(9)

Catalog

    Article views (365) PDF downloads (481) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return