• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, XU Ze-min, DING Zu-de. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008
Citation: WANG Zhi-liang, QU Jia-an, SHEN Lin-fang, XU Ze-min, DING Zu-de. Long-term settlement of tunnel caused by shield tunneling in peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1416-1424. DOI: 10.11779/CJGE201708008

Long-term settlement of tunnel caused by shield tunneling in peaty soil

More Information
  • Received Date: April 28, 2016
  • Published Date: August 24, 2017
  • In order to study the long-term settlement of tunnel caused by shield tunneling in peaty soil, the surrounding soil of tunnel is regarded as continuum, homogeneous and isotropic saturated viscoelastic medium. The rheological properties of peaty soil are described a five-component model. Based on the Terzaghi-Rendulic theory of two-dimensional consolidation, the governing equation for dissipation of the excess pore water pressure are established when the lining is impermeable. The equations are solved using the mathematical methods of separating variables, conformal mapping, Laplace transform and inverse transform, and the analytical solution of the dissipation of excess pore water pressure is obtained. Finally, the vertical strain of soil is integrated to get the formula for long-term settlement of tunnel. The variation laws of the disspation of excess pore water pressure and long-term settlement of tunnel in peaty soil are analyzed through an example. The results show that in the initial stage, the dissipating speed of the excess pore water pressure is faster than that in soft clay in Shanghai, and then it becomes slow and steady. The lasting time of long-term settlement is longer and the settlement amount is larger in the peaty soil. The tunnel settlement tends to be stable in 900 days, and the cumulative settlement is almost up to 150 mm. In addition, the rheological properties of peaty soil in Kunming are significant; if the excess pore water pressure is dissipated by 90% as the completion time of the primary consolidation settlement, the secondary consolidation settlement accounting for about 36% of the total settlement of tunnel is an important part of the long-term settlement of tunnel.
  • [1]
    SHEN Shui-long, WU Huai-na, CUI Yu-jun, et al. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J].Tunnelling and Underground Space Technology, 2014, 40(3): 309-323.
    [2]
    NG C W W, LIU Guo-bin, LI Qing. Investigation of the long-term tunnel settlement mechanism of the first metro line in Shanghai[J].Canadian Geotechnical Journal, 2013, 50(6): 674-684.
    [3]
    刘建航, 侯学渊. 盾构法隧道[M]. 北京: 中国铁道出版社,1991. (LIU Jian-hang, HOU Xue-yuan. Shield tunnel[M]. Beijing: China Railway Publishing House, 1991. (in Chinese))
    [4]
    蒋忠信. 滇池泥炭土[M]. 成都: 西南交通大学出版社, 1994. (JIANG Zhong-xin. Dianchi peaty soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese))
    [5]
    阮永芬, 刘岳东, 王 东, 等. 昆明泥炭土与泥炭质土对建筑地基的影响[J]. 昆明理工大学学报(理工版), 2003, 28(3): 121-124. (RUAN Yong-fen, LIU Yue-dong, WANG Dong, et al. Effect of Kunming’s peat & peaty soil on the building foundation[J]. Journal of Kunming University of Science and Technology (Science and Technology) , 2003, 28(3): 121-124. (in Chinese))
    [6]
    熊恩来, 阮永芬, 刘文连, 等. 云南泥炭土力学特征实验及归一化性状研究[J]. 云南水力发电, 2005, 21(2): 39-41. (XIONG En-lai, RUAN Yong-fen, LIU Wen-lian, et al. Mechanical testing of Yunnan’s peat soil and study of its generalized behavior[J]. Yunnan Water Power, 2005, 21(2): 39-41. (in Chinese))
    [7]
    桂 跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特征及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. (GUI Yue, YU Zhi-hua, LIU Hai-ming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese))
    [8]
    吕俊青. 昆明盆地泥炭土流变特性与本构模型研究[D]. 昆明: 昆明理工大学, 2011. (LÜ Jun-qing. Study of rheological characteristics and constitutive model of peaty soil in Kunming Basin[D]. Kunming: Kunming University of Science and Technology, 2011. (in Chinese))
    [9]
    LEE K M, JI H W, SHEN C K, et al. Ground response to the construction of Shanghai Metro tunnel-line 2[J]. Soils and Foundation, 1999, 39(3): 113-134.
    [10]
    张忠苗, 林存刚, 吴世明, 等. 泥水盾构施工引起的地面固结沉降实例研究[J]. 浙江大学学报(工学版), 2012, 46(3): 431-440. (ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, et at. Case study of ground surface consolidation settlements induced by slurry shield tunnelling[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3): 431-440. (in Chinese))
    [11]
    WONGSAROJ J, SOGA K, MAIR R J. Modeling of long-term ground response to tunneling under St James’s Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
    [12]
    SHIN J H, ADDENBROOKE T I, POTTS D M.A numerical study of the effect of groundwater movement on long-term tunnel behaviour[J]. Géotechnique, 2002, 52(6): 391-403.
    [13]
    杨 敏, 黄 炬, 孙 庆, 等. 黏土中隧道开挖引起的地表及地表以下土体长期沉降计算方法[J]. 岩土工程学报, 2012, 34(2): 217-221. (YANG Min, HUANG Ju, SUN Qing, et al. Computation method for long-term surface and subsurface settlements induced by excavation of tunnels in clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 217-221. (in Chinese))
    [14]
    詹美礼, 钱家欢. 黏弹性地基中洞周土体固结问题的解析解[J]. 河海大学学报, 1993, 21(2): 54-60. (ZHEN Mei-li, QIAN Jia-huan. Theoretical analysis for consolidation of viscoelastic clay about circular tunnels in foundations[J]. Journal of Hohai University, 1993, 21(2): 54-60. (in Chinese))
    [15]
    张冬梅, 黄宏伟, 王箭明. 软土隧道地表长期沉降的黏弹性流变与固结耦合分析[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2359-2362. (ZHANG Dong-mei, HUANG Hong-wei, WANG Jian-ming. Analysis of long-term settlements over tunnels using visco-elastic constitutive model coupled with consolidation theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2359-2362. (in Chinese))
    [16]
    包鹤立. 衬砌局部渗漏条件下软土盾构隧道的长期性态研究[D]. 上海: 同济大学, 2008. (BAO He-li. Research on the long-term behavior of shield tunnel with partially sealed linings in soft soil[D]. Shanghai: Tongji University, 2008. (in Chinese))
    [17]
    童 磊. 软土浅埋隧道变形、渗流及固结性状研究[D]. 杭州: 浙江大学, 2010. (TONG Lei. Studies on land subsidence, seepage field and consolidation behavior of soft soil around a shallow circular tunnel[D]. Hangzhou: Zhejiang University, 2010. (in Chinese))
    [18]
    刘晨晖, 杨 敏, 孙 庆, 等. 圆形盾构隧道开挖引起的黏土长期沉降理论解[J]. 同济大学学报(自然科学版), 2015, 43(7): 1000-1007. (LIU Chen-hui, YANG Min, SUN Qing, et al. Theoretical solutions for shield tunneling induced long-term settlement in clays[J]. Journal of Tongji University (Natural Science), 2015, 43(7): 1000-1007. (in Chinese))
    [19]
    傅作新. 工程徐变力学[M]. 北京: 水利电力出版社, 1985. (FU Zuo-xin. Engineering creep mechanics[M]. Beijing: Water Conservancy and Electric Power Press, 1985. (in Chinese))

Catalog

    Article views (374) PDF downloads (264) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return