• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Guo-xing, BU Yi-fan, ZHOU Zheng-long, ZHANG Shu-han, XU Han-gang. Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1344-1350. DOI: 10.11779/CJGE201707022
Citation: CHEN Guo-xing, BU Yi-fan, ZHOU Zheng-long, ZHANG Shu-han, XU Han-gang. Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1344-1350. DOI: 10.11779/CJGE201707022

Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils

More Information
  • Received Date: March 24, 2016
  • Published Date: July 24, 2017
  • To contribute to a better fundamental understanding of the deformation behavior for Suzhou quaternary sedimentary soils, using GCTS cylinder apparatus cyclic loading testing system, a total of 40 cyclic triaxial tests are performed on various kinds of undisturbed soils at depth less than 100 m corresponding to a wide strain range in the order of 10-5 to 10-2. It is revealed that the variation characteristics of the normalized dynamic shear modulus (G/Gmax) and damping ratio (λ) with the increasing shear strain (γ) are strongly influenced by the sedimentary facies, depths and types of soils. The reduction of G/Gmax with the increasing values of γ when γ <10-4 is small, and the soils show nonlinear elasticity. Under the identical conditions, the test results demonstrate that the increasing depth shifts the values of G/Gmax and the relationship between λ and γ. Moreover, the sediments of flooded plain facies are more linear and have slightly smaller values of λ with the increasing values of γ than the sediments of littoral facies. Under the same sedimentary facies and similar depth, the reduction rates of G/Gmax with the increasing values of γ for silty sand, silty clay and clay have a descending order, and the values of λ under the same γ for silty sand, silty clay and clay increase successively.
  • [1]
    彭艳菊, 孟小红, 吕悦军, 等. 我国近海地震活动特征及其与地球物理场的关系[J]. 地球物理学进展, 2008, 23(5): 1377-1388. (PENG Yan-ju, MENG Xiao-hong, LIU Yue-jun, et al. The seismicity of China offshore seas and its relationship with geophysical fields[J]. Progress in Geophysics, 2008, 23(5): 1377-1388. (in Chinese))
    [2]
    李善邦. 中国地震目录[M]. 北京: 科学出版社, 1960. (LI Shan-bang. Catalog of earthquake in China[M]. Beijing: Science Press, 1960. (in Chinese))
    [3]
    中央地震工作小组办公室. 中国地震目录[M]. 北京: 地震出版社, 1971. (Earthquake Working Group Office, Central Government of the People's Republic of China. Catalog of earthquake in China[M]. Beijing: Seismological Press, 1971. (in Chinese))
    [4]
    高维明, 郑朗荪, 李家灵, 等. 1668年郯城8.5级地震的发震构造[J]. 中国地质, 1998, 4(3): 9-15. (GAO Wei-ming, ZHENG Lang-sun, LI Jia-ling, et al. Seismogenic structure of the 1668 Tancheng Ms8.5 earthquake[J]. Seismology and Geology, 1998, 4(3): 9-15. (in Chinese))
    [5]
    王权民, 李 刚, 陈正汉, 等. 厦门砂土的动力特性研究[J] 岩土力学, 2005, 26(10): 1628-1632. (WANG Quan-min, LI Gang, CHEN Zheng-han, et al. Research on dynamic characteristics of sands in Xiamen city[J]. Rock and Soil Mechanics, 2005, 26(10): 1628-1632.
    [6]
    吕悦军, 唐荣余, 沙海军. 渤海海底土类动剪切模量比和阻尼比试验研究[J]. 防灾减灾工程学报, 2003, 23(2): 35-42. (LÜ Yue-jun, TANG Rong-yu, SHA Hai-jun. Experimental study on dynamic shear modulus ratio and damping ratio of the soils of bohaiseafloor[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(2): 35-42. (in Chinese))
    [7]
    王志杰, 骆亚生, 王瑞瑞, 等. 不同地区原状黄土动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2010, 32(9): 1464-1469. (WANG Zhi-jie, LUO Ya-sheng, WANG Rui-rui, et al. Experimental study on dynamic shear modulus and damping ratio of undisturbed loess in different regions[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1464-1469. (in Chinese))
    [8]
    尚守平, 卢华喜, 任 慧, 等. 粉质黏土动剪其模量的试验对比研究[J]. 岩土工程学报, 2006, 28(3): 410-414. (SHANG Shou-ping, LU Hua-xi, REN Hui, et al. Comparative study on dynamic shear modulus of silty clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 410-414. (in Chinese))
    [9]
    孙 田, 陈国兴, 周恩全, 等. 深层海床粉质黏土动剪切模量和阻尼比试验研究[J]. 土木工程学报, 2012, 25(增刊1): 9-14. (SUN Tian, CHEN Guo-xing, ZHOU En-quan, et al. Experimental research in the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay[J]. China Civil Engineering Journal, 2012, 25(S1): 9-14. (in Chinese))
    [10]
    袁晓铭, 孙 锐, 孙 静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. (YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-199. (in Chinese))
    [11]
    战吉艳, 陈国兴, 杨伟林, 等. 苏州第四纪沉积土动剪切模量比和阻尼比试验研究[J]. 岩土工程学报, 2012, 34(3): 559-566. (ZHAN Ji-yan, CHEN Guo-xing, YANG Wei-lin, et al. Experimental study on dynamic shear modulus ratio and damping ratio of Suzhou quaternary sedimentary soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 559-566. (in Chinese))
    [12]
    王炳辉, 陈国兴, 胡庆兴. 南京细砂动剪切模量和阻尼比的试验研究[J]. 世界地震工程, 2010, 26(3): 7-15. (WANG Bing-hui, CHEN Guo-xing, HU Qing-xing. Experiment of dynamic shear modulus and damping of Nanjing fine sand[J]. World Earthquake Engineering, 2010, 26(3): 7-15. (in Chinese))
    [13]
    陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. (CHEN Guo-xing, LIU Xue-zhu, ZHU Ding-hua, et al. Experimental studies on dynamic soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese))
    [14]
    CHEN Guo-xing, CHEN Ji-hua, LIU Xue-zhu, et al. Experimental study on dynamic shear modulus ratio and damping ratio of recently deposited soils in the lower reaches of the Yangtze River[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005, 25(1): 49-57.
    [15]
    CHEN Guo-xing, ZHOU Zheng-long, PAN Hua, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range[J]. Engineering Geology, 2016, 204: 77-93.
    [16]
    Japanese Geotechnical Society. Method for cyclic triaxial test for deformation properties of geomaterials (JSF: T 542—1994), Tsuchito-Kiso Jpn Geotech Soc, 1994, 42(7): 98-108 (in Japanese))
    [17]
    KONDNER R L. Hyperbolic stress strain response:cohesive soils[J]. Journal of Soil Mechanics and Foundations, ASCE, 1963, 89(1): 115-143.
    [18]
    KONDNER R L, ZELASKO J S. A hyperbolic stress-strain formulation of sands[C]// Proceedings of the 2nd Pan-American Conference on Soil Mechanics and Foundation Engineering, Brazilian Association of Soil Mechanics. Silo Paulo, 1963: 289-324.
    [19]
    陈国兴, 谢君斐, 张克绪. 土的动模量和阻尼比的经验估计[J]. 地震工程与工程振动, 1995(1): 73-84. (CHEN Guo-xing, XIE Jun-fei, ZHANG Ke-xu. The empirical evaluation of soil modulus and damping ratio for dynamic analysis[J]. Earthquake Engineering and Engineering Vibration, 1995(1): 73-84. (in Chinese))

Catalog

    Article views (281) PDF downloads (248) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return