• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Hao-liang, LIU Zhao-peng, DU Yan-jun, XUE Qiang, WEI Ming-li, LI Chun-ping. Effect of acid rain on leaching characteristics of lead, zinc and cadmium- contaminated soils stabilized by phosphate-based binder: semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1058-1064. DOI: 10.11779/CJGE201706011
Citation: WU Hao-liang, LIU Zhao-peng, DU Yan-jun, XUE Qiang, WEI Ming-li, LI Chun-ping. Effect of acid rain on leaching characteristics of lead, zinc and cadmium- contaminated soils stabilized by phosphate-based binder: semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1058-1064. DOI: 10.11779/CJGE201706011

Effect of acid rain on leaching characteristics of lead, zinc and cadmium- contaminated soils stabilized by phosphate-based binder: semi-dynamic leaching tests

More Information
  • Received Date: January 19, 2016
  • Published Date: June 24, 2017
  • The previous studies show that acid rain pH significantly affects the leachability of stabilized heavy metals-contaminated soils. The parameters of diffusion coefficient (De) and retardation factor (Rd) are critical for quantitative assessment of impact of stabilized contaminated soils on the surrounding environment. However, the effective diffusion coefficient and the retardation factor of the stabilized soils have not been well addressed in the previous studies. This study investigates the diffusion of heavy metals leached from a new binder, namely modified KMP, stabilized Pb, Zn and Cd-contaminated soils. A series of tests including desorption tests and semi-dynamic leaching tests are conducted to determine the obvious diffusion coefficient (Dobs) and the retardation factor (Rd), respectively. The desorption test results show that the leached concentrations of Pb, Zn and Cd increase with the increase in their initial concentrations. It is also found that the desorption curves can be fitted using the Freundlich desorption/adsorption model. The semi-dynamic leaching test results show that the leaching of heavy metals released from the stabilized soils is controlled by diffusion process. The obvious diffusion coefficients (Dobs) of Pb, Zn and Cd are estimated as 1.05×10-16, 7.84×10-13 and 2.11×10-12 m2/s. Combined with the desorption and semi-dynamic leaching tests, the retardant factors of Pb, Zn and Cd are estimated as 17155.6, 251.6, and 109.7. The effective diffusion coefficients are therefore determined as 1.80×10-12, 1.97×10-10 and 2.32×10-10 m2/s for Pb, Zn and Cd, respectively. Compared with those of the previous studies, the effective diffusion coefficients of Pb presented in this study is 2 orders of magnitude lower, whereas the effective diffusion coefficients of Zn and Cd are consistent with those reported in the previous studies.
  • [1]
    张孝飞, 林玉锁, 俞 飞, 等. 城市典型工业区土壤重金属污染状况研究[J]. 长江流域资源与环境, 2005, 14(4): 512-515. (ZHANG Xiao-fei, LIN Yu-suo, YU Fei, et al. Pollution of heavy metals in urban soils of typical industrial and surrounding residential area in Nanjing city[J]. Resources & Environment in the Yangtze Basin, 2005, 14(4): 512-515. (in Chinese))
    [2]
    卢 瑛, 龚子同, 张甘霖, 等. 南京城市土壤重金属含量及其影响因素[J]. 应用生态学报, 2004, 15(1): 123-126. (LU Ying, GONG Zi-tong, ZHANG Gan-lin, et al. Heavy metal concentration in Nanjing urban soils and their affecting factors[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 123-126. (in Chinese))
    [3]
    李 胤, 毛义伟, 周立晨, 等. 上海世博会规划区域城市土壤重金属调查及评价研究[J]. 土壤通报, 2009(4): 926-931. (LI Yin, MAO Yi-wei, ZHOU Li-chen, et al. An investigation and assessment on the soil heavy metal in Shanghai EXPO Planning Area[J]. Chinese Journal of Soil Science, 2009(4): 926-931. (in Chinese))
    [4]
    李小虎, 汤中立, 初凤友. 大型金属矿山不同环境介质中重金属元素化学形态分布特征——以甘肃金昌市和白银市为例[J]. 地质科技情报, 2008, 27(4): 95-100. (LI Xiao-hu, TANG Zhong-li, CHU Feng-you. Chemical forms of heavy metals in soil and sediments around Jinchuan and Baiyin Mines, Gansu Province[J]. Geological Science & Technology Information, 2008, 27(4): 95-100. (in Chinese))
    [5]
    EPA U S. Treatment technologies for site cleanup: Annual status report[R]. 11th ed. Washington D C: Office of Solid Waste and Emergency Response, 2004.
    [6]
    李 磊, 朱 伟, 吉顺健, 等. 微生物对固化/稳定化污泥长期强度的影响研究[J]. 岩土工程学报, 2008, 29(12): 1778-1782. (LI Lei, ZHU Wei, JI Shun-Ji, et al. Influence of micro-organism on long-term strength of solidified/ stabilized sludge[J]. Chinese Journal of Geotechnical Engineering, 2008, 29(12): 1778-1782. (in Chinese))
    [7]
    PEREIRA C F, LUNA Y, QUEROL X, et al. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geo-polymers[J]. Fuel, 2009, 88(7): 1185-1193.
    [8]
    刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement- solidified lead-contaminated clay via semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
    [9]
    钟汉珍, 袁 泉. 长江流域酸雨危害及对策分析[J]. 华中农业大学学报(社会科学版), 2002(3): 18-21. (ZHONG Han-zhen, YUAN Quan. The harmfulness of acid rain in yangtze river valley and its counter measures[J]. Journal of Huazhong Agricultural University (Social Science Edation), 2002(3): 18-21. (in Chinese))
    [10]
    CAO X, MA L Q, RHUE D R et al. Mechanisms of lead, copper, and zinc retention by phosphate rock[J]. Environmental Pollution, 2004, 131(3): 435-444.
    [11]
    DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188.
    [12]
    MOON D H, DERMATAS D. An Evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions[J]. Engineering Geology, 2006, 85: 67-74.
    [13]
    MALVIYA R, CHAUDHARY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials, 2006, 137(1): 207-217.
    [14]
    CUISINIER O, BORGNE T L, DENEELE D, et al. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement[J]. Engineering Geology, 2011, 117(3/4): 229-235.
    [15]
    王洪涛. 多孔介质污染物迁移动力学[M]. 北京: 高等教育出版社, 2008. (WANG Hong-tao. Dynamic of fluid flow and contaminant transport in porous media[M]. Beijing: Higher Education Press, 2008. (in Chinese))
    [16]
    USEPA. Method 1315. Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure[S]. Washington DC, 2013.
    [17]
    ROWE R K, QUIGLEY R M, BRACHMAN R W I, et al. Barrier systems for waste disposal facilities[M]. London: Spon Press, 2004.
    [18]
    Japanese Geotechnical Society. Test method for water-solid component of soils[S]. Tokyo, 2000.
    [19]
    李振泽, 陈云敏, 唐晓武, 等. 污染物在黏土中的非线性扩散特性[J]. 浙江大学学报(工学版), 2010, 44(12): 2337-2341. (LI Zhen-ze, CHEN Yun-min, TANG Xiao-wu, et al. Nonlinear diffusion behavior of pollutant in clay column[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(12): 2337-2341. (in Chinese))
    [20]
    钟孝乐. 重金属在高岭土中对流-弥散参数的测试研究[D]. 杭州: 浙江大学, 2013. (ZHONG Xiao-le. A study of testing advection and dispersion parameter of heavy metals in kaoli[D]. Hangzhou: Zhejiang University, 2013. (in Chinese))
    [21]
    DU Y J, LIU S Y, HAYASH S. Geoenvironmental assessment of Ariake clay for its potential use as a landfill barrier material[J]. Chinese Journal of Geotechnical Engineering. 2005, 27(10): 1215-1221.
    [22]
    SHACKELFORD C D, DANIEL D E. Diffusion in saturated soil: II results for compacted clay[J]. Journal of Geotechnical Engineering, 1991, 117(3): 485-506.
    [23]
    SHACKELFORD C D, COTTEN T E, ROHAL K M, et al. Acid buffering a high pH soil for zinc diffusion[J]. Journal of Geotechnical Engineering. 1997, 123(3): 260-271.
    [24]
    CAMUR M Z, YAZICIGIL H. Laboratory determination of multicomponent effective diffusion coefficients for heavy metals in a compacted clay[J]. Turkish Journal of Earth Sciences, 2005, 14(1): 91-103.
    [25]
    GOREHAM V, LAKE C, YUET P. Characterizing porosity and diffusive properties of monolithic cement-based solidified/stabilized materials[J]. Geotechnical Testing Journal, 2012, 35(35): 1-10.
    [26]
    TITS J, JAKOB A, WIELAND E, et al. Diffusion of tritiated water and 22Na + through non-degraded hardened cement pastes[J]. Journal of Contaminant Hydrology, 2003, 61(1/2/3/4): 45-62.
    [27]
    SAXENA S, DSOUZA S F. Heavy metal pollution abatement using rock phosphate mineral[J]. Environment International. 2006, 32(2): 199-202.
    [28]
    RAICEVIC S, KALUDJEROVIC T, ZOUBOULIS A I. In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification[J]. Journal of Hazardous Materials. 2005, B117(1): 41-53.
  • Related Articles

    [1]CAO Xiaolin, ZHOU Fengxi, DAI Guoliang. Dynamic response analysis of saturated soils and single pile under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 73-78. DOI: 10.11779/CJGE2023S20004
    [2]HUANG Juan, HU Zhongwei, YU Jun, LI Dongkai. Pile-top impedance of pile foundation in liquefied soil based on viscous fluid mechanics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1063-1071. DOI: 10.11779/CJGE20220322
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
    [5]AI Zhi-yong, LI Zhi-xiong. Horizontal vibration of a pile group in transversely isotropic layered soils under scour conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 613-618. DOI: 10.11779/CJGE201604004
    [6]ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, FU Qiang. Analytical solution of horizontal vibration of cast-in-place large-diameter pipe piles in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1447-1454. DOI: 10.11779/CJGE201408010
    [7]YU Jun, SHANG Shouping, LI Zhong, REN Hui, ZENG Yulin. Dynamical characteristics of an end bearing pile embedded in saturated soil under horizontal vibration[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 408-415.
    [8]SHANG Shouping, YU Jun, WANG Haidong, REN Hui. Horizontal vibration of piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1696-1702.
    [9]HU Changbin, ZHANG Tao. Study on soil-pile interaction in torsional vibrations[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 184-190.
    [10]HUANG Maosong, WU Zhiming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38.
  • Cited by

    Periodical cited type(5)

    1. 张硕,张翰清,张昕,姜彤,吴嘉绪,杨创维. 动水驱动作用下边坡灾变防控研究综述. 人民长江. 2025(02): 134-143+151 .
    2. 范钢伟,骆韬,张东升,张世忠,范张磊. 碱水作用下弱胶结粉砂岩孔隙结构分形特征与非线性劣化机制. 中国矿业大学学报. 2024(01): 34-45 .
    3. 蔡国军,田宏亮,刘路路,刘晓燕,章荣军. 复杂环境下膨胀土工程特性演化特征研究进展. 应用基础与工程科学学报. 2024(06): 1511-1537 .
    4. 刘剑,关钰荣,王会昊,邵振宝,徐兴倩. 水土化学力学效应研究现状与展望. 科学技术与工程. 2023(10): 4019-4032 .
    5. 肖桂元,裴心成,刘冲,刘闯,刘芠君. 酸雨对丹江口库区膨胀土变形和微观结构影响研究. 青海大学学报. 2023(04): 86-91 .

    Other cited types(6)

Catalog

    Article views (330) PDF downloads (324) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return