• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Qi-peng, NG C. W. W., CHEN Xing-xin, GUO Li-qun. Failure mechanism and setback distance of single pile subjected to normal faulting[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 720-726. DOI: 10.11779/CJGE201704018
Citation: CAI Qi-peng, NG C. W. W., CHEN Xing-xin, GUO Li-qun. Failure mechanism and setback distance of single pile subjected to normal faulting[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 720-726. DOI: 10.11779/CJGE201704018

Failure mechanism and setback distance of single pile subjected to normal faulting

More Information
  • Received Date: January 21, 2016
  • Published Date: May 19, 2017
  • Field case studies after earthquake show that pile foundation can be severely damaged by bedrock fault movement. The failure mechanism of this type of foundation damage is not yet fully understood. Centrifuge modeling of a single pile damage induced by normal faulting in sand is conducted. The deformations of pile and soil are measured. The developments of axial forces and bending moments along the pile with bedrock fault movement are monitored. The centrifuge test results show that when the bedrock fault movement equals 0.4 m, the pile displaces consistently with the surrounding soil. With the increase in bedrock fault movement, sand deformation is localized around a fault rupture and pile displacement is significantly reduced. The rupture increases in dip at the soil-bedrock interface and propagates upward with a dip angle of 80 degrees to the horizontal. It outcrops at the ground surface on the hanging wall side of the pile. The sand deformation is classified as a stationary zone, a shearing zone and a rigid body zone. When the single pile is located around the shearing zone, the pile is bent towards the hanging wall. For normal faulting, the setback distances of a single pile from the bedrock fault line on the footwall and the hanging wall are 15 and 10 m, respectively.
  • [1]
    FACCIOLI E, ANASTASOPOULOS I, GAZETAS G, et al. Fault rupture-foundation interaction: selected case histories[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 557-583.
    [2]
    徐锡伟, 于贵华, 马文涛, 等. 活断层地震地表破裂“避让带”宽度确定的依据与方法[J]. 地震地质, 2002, 24(4): 470-483. (XU Xi-wei, YU Gui-hua, MA Wen-tao, et al. Evidence and methods for determining the safety distance from the potential earthquake surface rupture on active fault[J]. Seismology and Geology, 2002, 24(4): 470-483. (in Chinese))
    [3]
    刘守华, 董津城, 徐光明, 等. 地下断裂对不同土质上覆土层的工程影响[J]. 岩石力学与工程学报, 2005, 24(11): 1868-1873. (LIU Shou-hua, DONG Jin-cheng, XU Guang-ming, et al. Influence on different overburden soils due to bedrock fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1868-1873. (in Chinese))
    [4]
    LEE J W, HAMADA M. An experimental study on earthquake fault rupture propagation through a sandy soil deposit[J]. Structural Engineering/Earthquake Engineering, 2005, 22(1): 1-13.
    [5]
    ANASTASOPOULOS I, GAZETAS G, BRANSBY M F, et al. Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 943-958.
    [6]
    CAI Q P, NG C W W, LUO G Y, et al. Influences of pre-existing fracture on ground deformation induced by normal faulting in mixed ground conditions[J]. Journal of Central South University, 2013, 20(2): 501-509.
    [7]
    蔡奇鹏, 吴宏伟. 胶结黏土中正断层扩展的变形和孔压变化研究[J]. 岩石力学与工程学报, 2014, 33(2): 390-395. (CAI Qi-peng, WU Hong-wei. Deformation mechanism and variation of pore pressure due to normal fault propagation in cemented clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 390-395. (in Chinese))
    [8]
    BRANSBY M F, DAVIES M C R, EL NAHAS A. Centrifuge modeling of normal fault-foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 585-605.
    [9]
    AHMED W, BRANSBY M F. The interaction of shallow foundations with reverse faults[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 914-924.
    [10]
    LOLI M, ANASTASOPOULOS I, BRANSBY M F, et al. Caisson foundations subjected to reverse fault rupture: centrifuge testing and numerical analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 914-925.
    [11]
    ANASTASOPOULOS I, KOURKOULIS R, GAZETAS G, et al. Interaction of piled foundation with a rupturing normal fault[J]. Géotechnique, 2013, 63(12): 1042-1059.
    [12]
    NG C W W, VAN LAAK P, TANG W H, et al. The Hong Kong geotechnical centrifuge[C]// Proc 3rd Int Conf soft Soil Engineering. Hong Kong, 2001.
    [13]
    胡 平, 丁彦慧, 蔡奇鹏, 等. 第四纪地层中断层同震错动行为的离心机试验研究[J]. 地球物理学报, 2011, 54(9): 2293-2301. (HU Ping, DING Yan-hui, CAI Qi-peng, et al. Centrifuge modeling on the behavior of co-seismic fault dislocation in the Quaterary stratum[J]. Chinese Journal of Geophysics, 2011, 54(9): 2293-2301. (in Chinese))
    [14]
    NG C W W, CAI Q P, HU P. Centrifuge and numerical modeling of normal fault-rupture propagation in clay with and without a preexisting fracture[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(12): 1492-1502.
    [15]
    CAI Q P, NG C W W. Centrifuge modeling of pile-sand interaction induced by normal faulting[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016046.
    [16]
    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-415.
    [17]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
    [18]
    Cai Q P, NG C W W. Analytical approach for estimating ground deformation profile induced by normal faulting in undrained clay[J]. Canadian Geotechnical Journal, 2013, 50(4): 413-422.
    [19]
    BRAY J D, SEED R B, CLUFF L S, et al. Earthquake fault rupture propagation through soil[J]. Journal of Geotechnical Engineering, 1994, 120(3): 543-561.
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (370) PDF downloads (330) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return