• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jie, YIN Zhen-yu, HUANG Hong-wei, JIN Yin-fu, ZHANG Dong-mei. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. DOI: 10.11779/CJGE201703021
Citation: YANG Jie, YIN Zhen-yu, HUANG Hong-wei, JIN Yin-fu, ZHANG Dong-mei. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. DOI: 10.11779/CJGE201703021

Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables

More Information
  • Received Date: December 05, 2015
  • Published Date: April 24, 2017
  • Under the framework of bounding surface plasticity and critical state concept, by introducing the disturbed state concept for hardening variables of elastic behavior, structured yield surface, structured bonding adhesive stress and surface anisotropy, an elastoplastic model for structured clays is proposed. First, three structural disturbance degrees are defined to describe the disturbances of soils due to plastic strains to the size of yield surface, the adhesive stress and the yield surface anisotropy. The elastic law is also enhanced by considering anisotropy and disturbance. The model is then used to simulate the oedometer tests and undrained triaxial compression tests on two typical structured clays, Shanghai clay and Vallericca stiff clay. Finally, implementing the proposed model into a finite difference code as a user defined model, a biaxial shearing test is carried out to show the model ability in describing the development of structural disturbance degrees and its distributions in soils caused by plastic straining.
  • [1]
    LEROUEIL S, VAUGHAN P. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488.
    [2]
    谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. (XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese))
    [3]
    ARTHUR J, MENZIES B. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [4]
    ASAOKA A, NAKANO M, NODA T. Super loading yield surface concept for the saturated structured soils[C]// Application of Numerical Methods to Geotechnical Problems. Vienna, 1998: 233-242.
    [5]
    LIU M, CARTER J. A structured cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313-1332.
    [6]
    周 成, 沈珠江, 陈铁林,等. 结构性黏土的边界面砌块体模型[J]. 岩土力学, 2003, 24(3): 317-321. (ZHOU Chen, SHEN Zhu-jiang, CHEN Tie-lin, et al. A bounding surface masonry model for structured clays[J]. Rock and Soil Mechanics, 2003, 24(3): 317-321. (in Chinese))
    [7]
    WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403-418.
    [8]
    王立忠, 沈恺伦. K 0 固结结构性软黏土的旋转硬化规律研究[J]. 岩土工程学报, 2008, 30(6): 863-872. (WANG Li-zhong, SHEN Kai-lun. Rotational hardening law of K 0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863-872. (in Chinese))
    [9]
    KARSTUNEN M, KRENN H, WHEELER S J, et al. Effect of anisotropy and destructuration on the behavior of Murro test embankment[J]. International Journal of Geomechanics, 2005, 5(2): 87-97.
    [10]
    YIN Z Y, KARSTUNEN M. Modelling strain-rate- dependency of natural soft clays combined with anisotropy and destructuration[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 216-230.
    [11]
    HUANG M, LIU Y, SHENG D. Simulation of yielding and stress-stain behavior of shanghai soft clay[J]. Computers and Geotechnics, 2011, 38(3): 341-353.
    [12]
    HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096-1105.
    [13]
    KAMRUZZAMAN A, CHEW S, LEE F. Structuration and destructuration behavior of cement-treated Singapore marine clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 573-589.
    [14]
    YIN Z Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010, 47(14): 1933-1951.
    [15]
    KOBAYASH I, SOGA K, ILZUKA A. Numerical interpretation of a shape of yield surface obtained from stress probe tests[J]. Soils and Foundations, 2003, 43(3): 95-103.
    [16]
    SHENG D, SLOAN S, YU H. Aspects of finite element implementation of critical state models[J]. Computational Mechanics, 2000, 26(2): 185-196.
    [17]
    YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123.
    [18]
    YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119.
    [19]
    YAO Y, LU D, ZHOU A, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709.
    [20]
    YAO Y, SUN D, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(4): 323-337.
    [21]
    YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
    [22]
    MANZARI M, NOUR M. On implicit integration of bounding surface plasticity models[J]. Computers & Structures, 1997, 63(3): 385-395.
    [23]
    YAO Y, SUN D, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
    [24]
    YAO Y, HOU W, ZHOU A. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451.
    [25]
    YAO Y, GAO Z, ZHAO J, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
    [26]
    DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
    [27]
    DESAI C S. Disturbed state concept (DSC) for constitutive modeling of geologic materials and beyond[C]// Constitutive Modeling of Geomaterials. Springer, 2012: 27-45.
    [28]
    YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic-viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677.
    [29]
    黄茂松, 柳艳华. 天然软黏土屈服特性及主应力轴旋转效应的本构模拟[J]. 岩土工程学报, 2011, 33(11): 1667-1675. (HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667-1675. (in Chinese))
    [30]
    AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166.
    [31]
    RAMPELLO S, GEORGIANNOU V, VIGGIANI G. Strength and dilatancy of natural and reconstituted Vallericca clay[C]// Proceedings of International Symposium on the Geotechnical Engineering of Hard Soils—Soft Rocks. Athens, 2011: 761-768.
    [32]
    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elasto- viscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2014, 141(6): 04014162.

Catalog

    Article views (416) PDF downloads (384) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return