Citation: | YANG Jie, YIN Zhen-yu, HUANG Hong-wei, JIN Yin-fu, ZHANG Dong-mei. Bounding surface plasticity model for structured clays using disturbed state concept-based hardening variables[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 554-561. DOI: 10.11779/CJGE201703021 |
[1] |
LEROUEIL S, VAUGHAN P. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467-488.
|
[2] |
谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. (XIE Ding-yi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese))
|
[3] |
ARTHUR J, MENZIES B. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
|
[4] |
ASAOKA A, NAKANO M, NODA T. Super loading yield surface concept for the saturated structured soils[C]// Application of Numerical Methods to Geotechnical Problems. Vienna, 1998: 233-242.
|
[5] |
LIU M, CARTER J. A structured cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313-1332.
|
[6] |
周 成, 沈珠江, 陈铁林,等. 结构性黏土的边界面砌块体模型[J]. 岩土力学, 2003, 24(3): 317-321. (ZHOU Chen, SHEN Zhu-jiang, CHEN Tie-lin, et al. A bounding surface masonry model for structured clays[J]. Rock and Soil Mechanics, 2003, 24(3): 317-321. (in Chinese))
|
[7] |
WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403-418.
|
[8] |
王立忠, 沈恺伦. K 0 固结结构性软黏土的旋转硬化规律研究[J]. 岩土工程学报, 2008, 30(6): 863-872. (WANG Li-zhong, SHEN Kai-lun. Rotational hardening law of K 0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863-872. (in Chinese))
|
[9] |
KARSTUNEN M, KRENN H, WHEELER S J, et al. Effect of anisotropy and destructuration on the behavior of Murro test embankment[J]. International Journal of Geomechanics, 2005, 5(2): 87-97.
|
[10] |
YIN Z Y, KARSTUNEN M. Modelling strain-rate- dependency of natural soft clays combined with anisotropy and destructuration[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 216-230.
|
[11] |
HUANG M, LIU Y, SHENG D. Simulation of yielding and stress-stain behavior of shanghai soft clay[J]. Computers and Geotechnics, 2011, 38(3): 341-353.
|
[12] |
HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096-1105.
|
[13] |
KAMRUZZAMAN A, CHEW S, LEE F. Structuration and destructuration behavior of cement-treated Singapore marine clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 573-589.
|
[14] |
YIN Z Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010, 47(14): 1933-1951.
|
[15] |
KOBAYASH I, SOGA K, ILZUKA A. Numerical interpretation of a shape of yield surface obtained from stress probe tests[J]. Soils and Foundations, 2003, 43(3): 95-103.
|
[16] |
SHENG D, SLOAN S, YU H. Aspects of finite element implementation of critical state models[J]. Computational Mechanics, 2000, 26(2): 185-196.
|
[17] |
YAO Y P, ZHOU A N, LU D C. Extended transformed stress space for geomaterials and its application[J]. Journal of Engineering Mechanics, 2007, 133(10): 1115-1123.
|
[18] |
YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119.
|
[19] |
YAO Y, LU D, ZHOU A, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709.
|
[20] |
YAO Y, SUN D, LUO T. A critical state model for sands dependent on stress and density[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(4): 323-337.
|
[21] |
YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 603-608.
|
[22] |
MANZARI M, NOUR M. On implicit integration of bounding surface plasticity models[J]. Computers & Structures, 1997, 63(3): 385-395.
|
[23] |
YAO Y, SUN D, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
|
[24] |
YAO Y, HOU W, ZHOU A. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451.
|
[25] |
YAO Y, GAO Z, ZHAO J, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868.
|
[26] |
DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
|
[27] |
DESAI C S. Disturbed state concept (DSC) for constitutive modeling of geologic materials and beyond[C]// Constitutive Modeling of Geomaterials. Springer, 2012: 27-45.
|
[28] |
YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic-viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677.
|
[29] |
黄茂松, 柳艳华. 天然软黏土屈服特性及主应力轴旋转效应的本构模拟[J]. 岩土工程学报, 2011, 33(11): 1667-1675. (HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667-1675. (in Chinese))
|
[30] |
AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166.
|
[31] |
RAMPELLO S, GEORGIANNOU V, VIGGIANI G. Strength and dilatancy of natural and reconstituted Vallericca clay[C]// Proceedings of International Symposium on the Geotechnical Engineering of Hard Soils—Soft Rocks. Athens, 2011: 761-768.
|
[32] |
YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elasto- viscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2014, 141(6): 04014162.
|