• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xiao-bo, BO Jing-shan, WANG Xin, WAN Wei. Effect of bedrock terrain on seismic ground motion[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 460-468. DOI: 10.11779/CJGE201703009
Citation: LI Xiao-bo, BO Jing-shan, WANG Xin, WAN Wei. Effect of bedrock terrain on seismic ground motion[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 460-468. DOI: 10.11779/CJGE201703009

Effect of bedrock terrain on seismic ground motion

More Information
  • Received Date: November 24, 2015
  • Published Date: April 24, 2017
  • Based on theoretical analysis, the spectral element method is used to study the effect of bedrock terrain on ground motion. The achievements are as follows: (1) The intensity of bedrock ground motion is related to bedrock occurrence, incident orientation of seismic wave and other factors. The incident orientation of seismic waves is closer to the tangent direction of bedrock surface, and the intensity is smaller. On the contrary, the incident orientation is closer to the normal direction of bedrock surface, and the intensity is stronger. (2) The presence of bedrock with convex terrain leads to weakening of the surface intensity of ground motion, and thus to the formation of the relative weakening zone of ground motion intensity. While, the presence of bedrock with concave terrain leads to strengthening of the surface intensity of ground motion, and thus to the formation of the relative enhancement zone of ground motion intensity. (3) Under different bedrock topographic dips, there are different relative variation zones of ground motion intensity. Under the action of the bedrock with convex terrain, the relative weakening zone of ground motion intensity is 1.13~1.69 times larger than the bedrock convex area, which increases gradually with the increase of bedrock topographic dip. Whereas, under the action of the bedrock with concave terrain, the relative enhancement zone of ground motion intensity is 0.5~1 times smaller than the bedrock concave area, which decreases gradually with the increase of bedrock topographic dip. (4) Under different cover layer thicknesses, there are different relative variation zones of ground motion intensity. Under the action of the bedrock with convex terrain, the ratio of the relative weakening zone ground motion intensity to the bedrock convex area increases gradually with the increase of cover layer thickness. However, under the action of the bedrock with concave terrain, the ratio of the relative enhancement zone of ground motion intensity to the bedrock concave area decreases gradually with the increase of cover layer thickness.
  • [1]
    王钟琪, 谢君斐, 石兆吉. 地震工程地质导论[M]. 北京: 地震出版社, 1983. (WANG Zhong-qi, XIE Jun-fei, SHI Zhao-ji. Introduction of earthquake engineering geology[M]. Beijing: Seismological Press, 1983. (in Chinese))
    [2]
    BOORE D M. A note on the effect of simple topography on seismic SH waves[J]. Bull Seism Soc Am, 1972, 62(1): 275-284.
    [3]
    GELIL, BARD P Y, JULLIN B. The effect of topography on earthquake ground motion: a review and new results[J]. Bull Seism Soc Am, 1988, 78: 42-63.
    [4]
    GRAVES R W, PITARKA A, SOMERVILLE P G. Ground- motion amplification in the Santa Monica area: Effects of shallow basin-edge structure[J]. Bull Seism Soc Am, 1998, 88(5): 1224-1242.
    [5]
    KAWASE H. The cause of the damage belt in Kobe: the basin-edge effect, constructive interference of the direct S wave with the basin induced diffracted/Rayleigh waves[J]. Seismological Research Letters, 1996, 67(5): 25-34.
    [6]
    PITARKA A, IRIKURA K, IWATA T, et al. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake[J]. Bull Seism Soc Am, 1998, 88(2): 428-440.
    [7]
    SOMERVILLE P G. Emerging art: earthquake ground motion[C]// DAKOULAS P, YEGIAN M, HOLTZ D, eds. Geotechnical Earthquake Engineering and Soil DynamicsⅢ. Reston, Virginia, 1998: 1-38.
    [8]
    王海云, 谢礼立. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报, 2010, 53(7): 1631-1638. (WANG Hai-yun, XIE Li-li. Effects of topography on ground motion in the Xishan park, Zigong city[J]. Chinese J Geophys, 2010, 53(7): 1631-1638. (in Chinese))
    [9]
    王海云. 渭河盆地中土层场地对地震动的放大作用[J]. 地球物理学报, 2011, 54(1): 137-150. (WANG Hai-yun. Amplification effects of soil sites on ground motion in the Weihe basin[J]. Chinese J Geophys, 2011, 54(1): 137-150. (in Chinese))
    [10]
    郝宪生, 彭一民, 王志良. 徐州市埋藏基岩斜坡对地震动的影响[J]. 地震地质, 1985b, 7(3): 63-72. (HAO Xian-sheng, PENG Yi-min, WANG Zhi-liang. Effects of the underlying bedrock slope on seismic ground motion in the Xuzhou area[J]. Seismology and Geology, 1985b, 7(3): 63-72. (in Chinese))
    [11]
    万志清, 彭一民, 孙进忠. 埋藏基岩地形对地震波动影响的模拟研究[J]. 地球科学 (中国地质大学学报), 1993, 18(1): 60-66. (WAN Zhi-qing, PENG Yi-min, SUN Jin-zhong. Modelling study of effects of underlying-bedrock topography on earthquake wave motion[J]. Earth Science (Journal of China University of Geosciences), 1993, 18(1): 60-66. (in Chinese))
    [12]
    楼梦麟, 李遇春, 李南生, 等. 深覆盖土层地震反应分析中的若干问题[J]. 同济大学学报(自然科学版), 2006, 34(4): 427-432. (LOU Meng-lin, LI Yu-chun, LI Nan-sheng, et al. Some problems in seismic response analysis of soil layer with deep deposit[J]. Journal of Tongji University (Natural Science), 2006, 34(4): 427-432. (in Chinese))
    [13]
    周 红, 陈晓非. 凹陷地形对Rayleigh面波传播影响的研究[J]. 地球物理学报, 2007, 50(4): 1182-1189. (ZHOU Hong, CHEN Xiao-fei. A study on the effect of depressed topography on Rayleigh surface wave[J]. Chinese J Geophys, 2007, 50(4): 1182-1189. (in Chinese))
    [14]
    DEZFULIAN H, SEED H B. Seismic response of soil deposits underlain by sloping rock boundaries[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(6): 1893-1916.
    [15]
    DEZFULIAN H, SEED H B. Response of non-uniform soil deposits to travelling seismic waves[J]. Journal of the Soil Mechanics and Foundation Division, 1971, 97(SM1): 27-46.
    [16]
    郝宪生, 彭一民, 王志良. 北京市区埋藏基岩凹陷地形对地震动的影响[J]. 地震学报, 1985a, 7(3): 326-336. (HAO Xian-sheng, PENG Yi-min, WANG Zhi-liang. Effects of the depression in the topography of bedrock underlying Beijing on earthquake ground motion[J]. Acta Seismologica Sinica, 1985a, 7(3): 326-336. (in Chinese))
    [17]
    彭一民, 孙进忠, 郝宪生. 北京凹陷地震反应的数学物理模拟[J]. 地质学报, 1987(4): 308-320. (PENG Yi-min, SUN Jin-zhong, HAO Xian-sheng. Mathematical and physical modelling of seismic response in the Beijing depression[J]. Acta Geologica Sinica, 1987(4): 308-320. (in Chinese))
    [18]
    TAKANNORI S, KAZUOH S, HIROAKI Y. Effects of topography on earthquake ground motions in Yutian area: forward modeling with 2-D finite difference method[C]// Fundamental Research on Microzonation Methodology. The Ministry of Education, Science and Culture, Japan and the State Seismological Bureau, China. University of Tokyo, Tokyo, 1990: 123-129.
    [19]
    王余庆, 焦亦凡, 高艳平, 等. 埋藏倾斜基岩对水平地面地震反应的影响[C]// 第三届全国岩石动力学学术会议. 桂林, 1992. (WANG Yu-qing, JIAO Yi-fan, GAO Yan-ping, et al. The effects of underlying inclined bedrock on the seismic response of the upper ground[C]// The third National Conference on Rock Dynamics. Guilin, 1992. (in Chinese))
    [20]
    HAO X S, KAZUOH S, TAKANORI S. Low damage anomaly of the 1976 Tangshan earthquake: an analysis based on the explosion ground motions[J]. Bull Seism Soc Am, 1994, 84(4): 1018-1027.
    [21]
    LAURENZANO G, PRIOLO E, TONDI E. 2D numerical simulation of seismic ground motion: examples from the Marche region, Italy[J]. Journal of Seismology, 2008, 12: 395-412.
    [22]
    孙进忠, 彭一民, 赵鸿儒. 北京凹陷地震地面运动超声模拟[J]. 地震学报, 1988, 10(1): 98-108. (SUN Jin-zhong, PENG Yi-min, ZHAO Hong-ru. Supersonic modelling of earthquake ground motion in the Beijing depression[J]. Acta Seismologica Sinica, 1988, 10(1): 98-108. (in Chinese))
    [23]
    万志清. 城市地质中埋藏基岩对地震地面运动的影响: 北京凹陷超声地震模拟[D]. 北京: 中国地质大学(北京), 1990. (WAN Zhi-qing. The effects of underlying bedrock appearing in urban geologic environment on seismic ground motion: ultrasonic seismic modelling of Beijing depression[D]. Beijing: China University of Geosciences (Beijing), 1990. (in Chinese))
    [24]
    严珍珍, 张 怀, 杨长春, 等. 汶川大地震地震波传播的谱元法数值模拟研究[J]. 中国科学(D辑):地球科学, 2009, 39(4): 393-402. (YAN Zhen-zhen, ZHANG Huai, YANG Chang-chun, et al. The numerical simulation of seismic wave propagation by the spectral element method in Wenchuan great earthquake[J]. Science China Earth Sciences, 2009, 39(4): 393-402. (in Chinese))
    [25]
    PATERA A T. A spectral element method for fluid dynamics: laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54: 468-488.
    [26]
    王童奎, 李瑞华, 李小凡, 等. 谱元法数值模拟地震波传播[J]. 防灾减灾工程学报, 2007, 27(4): 470-477. (WANG Tong-kui, LI Rui-hua, LI Xiao-fan, et al. Numerical spectral-element modeling of seismic wave propagation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(4): 470-477. (in Chinese))
    [27]
    王秀明, SERIANI G, 林伟军. 利用谱元法计算弹性波场的若干理论问题[J]. 中国科学(G辑): 物理学 力学 天文学, 2007, 37(1): 41-59. (WANG Xiu-ming, SERIANI G, LIN Wei-jun. Some theoretical problems of calculating elastic wave field by using the spectral element method[J]. Science China Physics, Mechanics & Astronomy, 2007, 37(1): 41-59. (in Chinese))
    [28]
    彭海阔. 基于谱元法的导波传播机理及结构损伤识别研究[D]. 上海: 上海交通大学, 2010. (PENG Hai-kuo. Research on spectral element method-based characteristics of guided wave propagation and damage identification in structures[D]. Shanghai: Shanghai Jiao Tong University, 2010. (in Chinese))
    [29]
    PRIOLO E, SERIANI G. A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[C]// Proceedings of the 13th IMACS Conference on Comparative Applied Mathematics. Dublin, 1991: 551-556.
    [30]
    TESSMER E, KOSLOFF D. 3-D elastic modeling with surface topography by a Chebyshev spectral method[J]. Geophysics, 1994, 59: 464-473.
    [31]
    MADAY Y, PATERA A T. Spectral element methods for the incompressible Navier-Stokes equations[M]. New York: American Society of Mechanical Engineers. 1989.
    [32]
    KOMATITSCH D, VILOTTE J P. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seism Soc Am, 1998, 88(2): 368-392.
    [33]
    KOMATITSCH D, LIU Q Y, TROMP J, et al. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. Bull Seism Soc Am, 2004, 94(1): 187-206.
    [34]
    李孝波, 薄景山, 齐文浩, 等. 地震动模拟中的谱元法[J]. 地球物理学进展, 2014, 29(5): 2029-2039. (LI Xiao-bo, BO Jin-shan, QI Wen-hao, et al. Spectral element method in seismic ground motion simulation[J]. Progress in Geophysics, 2014, 29(5): 2029-2039. (in Chinese))
    [35]
    FACCIOLI E, MAGGIO F, PAOLUCCI1 P, et al. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method[J]. Journal of Seismology, 1997, 1: 237-251.
    [36]
    CUPILLARD P, DELAVAUD E, BURGOS G, et al. RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale[J]. Geophys J Int, 2012, 188: 1203-1220.
    [37]
    CHALJUB E, KOMATITISCH D, VILOTTE J P, et al. Spectral-element analysis in seismology[J]. Advances in Geophysics, 2007, 48(7): 365-419.
    [38]
    BASABE J, SEN M. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping[J]. Geophys J Int, 2010, 181: 577-590.

Catalog

    Article views (515) PDF downloads (361) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return