• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Xing-xing, WANG Si-jing, XIAO Rui-hua, CHENG Dong-xing, YAN Fu-zhang. Saline expansion and frost heave of sodium sulfate solution during cooling crystallization process[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2069-2077. DOI: 10.11779/CJGE201611017
Citation: LI Xing-xing, WANG Si-jing, XIAO Rui-hua, CHENG Dong-xing, YAN Fu-zhang. Saline expansion and frost heave of sodium sulfate solution during cooling crystallization process[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2069-2077. DOI: 10.11779/CJGE201611017

Saline expansion and frost heave of sodium sulfate solution during cooling crystallization process

More Information
  • Received Date: June 30, 2015
  • Published Date: November 19, 2016
  • During cooling process, solubility of sodium sulfate decreases, and part of sodium sulfate in the solution precipitates and crystallizes. When the temperature is lower than the specific temperature, in addition to crystallization of sodium sulfate, liquid water also precipitates as ice. The crystallization of the aqueous solution in porous medium induces the deformation and failure of porous medium, such as saline expansion and frost heave deformation of saline soils with sulfate sodium, salt efflorescence of wall painting, degradation of stone and concrete, etc. To study the deformation and failure mechanism of porous medium with saline solution during cooling process, the method for calculating the volumetric change rate of the system of Na2SO4+H2O during cooling process is proposed. In the procedure of calculation, the content of phases is determined according to the equilibrium concentration of phases in the system, Na2SO4+H2O, and the volume of the phases is added to calculate volumetric change rate of the system. Compared with the existing tests, the proposed method can successfully predict the volumetric change rate. The saline expansion rate is smaller than frost heave rate during cooling process. In addition, when heptahydrate sodium sulfate crystallizes and precipitates during at the saline expansion stage, the volumetric change ratio is relatively small, but the volumetric change abruptly increases at the frost heave stage.
  • [1]
    高江平, 王永刚. 盐渍土工程与力学性质研究进展[J]. 力学与实践, 2011, 33(4): 1-7. (GAO Jiang-ping, WANG Yong-gang. Research progress in engineering and mechanical properties of the saline soil[J]. Mechanics in Engineering, 2011, 33(4): 1-7. (in Chinese))
    [2]
    范 敏. 敦煌民用机场扩建工程场道地基工程地质勘察报告[R]. 兰州: 甘肃水文地质工程地质勘察院, 1999. (FAN Min. Engineering Geological investigation report about DunHuang Civil Airport Expansion[R]. Lanzhou: Gansu Investigation Institute of Hydrogeology and Engineering Geology, 1999. (in Chinese))
    [3]
    朱瑞成. 托克逊盐场建筑物墙体、地坪开裂的形成机制[J].工程勘察, 1992(1): 14-16. (ZHU Rui-cheng. The cracking formation mechanism of the wall and flool in Tuokexun salt factory[J]. Geotechnical Investigation & Surverying, 1992(1): 14-16. (in Chinese))
    [4]
    郭 宏, 李最雄, 宋大康, 等. 敦煌莫高窟壁画酥碱病害机理研究之一[J]. 敦煌研究, 1998(3): 153-163+188. (GUO Hong, LI Zui-xiong, SONG Da-kang, et al. Research on Efflorescence of wall paintings in the Mogao Grottoes of Dunhuang (I)[J]. Dun Huang Research, 1998(3): 153-163+188. (in Chinese))
    [5]
    郭 宏, 李最雄, 裘元勋, 等. 敦煌莫高窟壁画酥碱病害的机理研究之二[J]. 敦煌研究, 1998(4): 159-172+184. (GUO Hong, LI Zui-xiong, QIU Yuan-xun, et al. Research on Efflorescence of wall paintings in the Mogao Grottoes of Dunhuang (II)[J]. Dun Huang Research, 1998(4): 159-172+184. (in Chinese))
    [6]
    郭 宏, 李最雄, 裘元勋, 等. 敦煌莫高窟壁画酥碱病害机理研究之三[J]. 敦煌研究, 1999(3): 153-175. (GUO Hong, LI Zui-xiong, QIU Yuan-xun, et al. Research on Efflorescence of wall paintings in the Mogao Grottoes of Dunhuang (III)[J]. Dun Huang Research, 1999(3): 153-175. (in Chinese))
    [7]
    靳治良, 陈港泉, 钱 玲, 等. 莫高窟壁画盐害作用机理研究(Ⅱ)[J]. 敦煌研究, 2009(3): 100-102. (JIN Zhi-liang, CHENG Gang-quan, QIAN Lin, et al. Research on mechanics of salt Efflorescence of wall paintings in the Mogao Grottoes (II)[J]. DunHuang Research, 2009(3): 100-102. (in Chinese))
    [8]
    杨全兵, 杨钱荣. 硫酸钠盐结晶对混凝土破坏的影响[J]. 硅酸盐学报, 2007, 35(7): 877-880+885. (YANG Quan-bing, YANG Qian-rong. Effect of salt crystallization of sodium sulfate on deterioration of concreter[J]. Journal of the Chinese Ceramic Society, 2007, 35(7): 877-880+885. (in Chinese))
    [9]
    张志权. 不同粉黏粒含量盐渍土的工程性质研究[D]. 西安:长安大学, 2004. (ZHANG Zhi-quan. Study on the engineering properies of saline soils with different clay content[D]. Xi'an: Changan University, 2004. (in Chinese))
    [10]
    张莎莎. 粗颗粒硫酸盐盐渍土盐胀特性试验研究[D]. 西安:长安大学, 2007. (ZHANG Sha-sha. Study on the characteristic of the coarse grain clay sulfate salty soil[D]. Xian: Changan University, 2007. (in Chinese))
    [11]
    赵天宇. 内陆寒旱区硫酸盐渍土盐胀特性试验研究[D]. 兰州: 兰州大学, 2012. (ZHAO Tian-yu. Experimental study on salt heaving properties of inland sulfate saline soils in cold and arid regions[D]. Lanzhou: Lanzhou University, 2012. (in Chinese))
    [12]
    包卫星, 杨晓华, 谢永利. 典型天然盐渍土多次冻融循环盐胀试验研究[J]. 岩土工程学报, 2006, 28(11): 1991-1995. (BAO Wei-xing, YANG Xiao-hua, XIE Yong-li. Research on salt expansion of representative crude saline soil under freezing and thawing cycles[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1991-1995. (in Chinese))
    [13]
    王俊臣. 新疆水磨河细土平原区硫酸(亚硫酸)盐渍土填土盐胀和冻胀研究[D]. 长春: 吉林大学, 2005. (WANG Jun-chen. Study on the salty and frost swelling of sulfate salty soil fills in ShuiMohe Plain, North of TianShan[D]. Changchun: Jilin University, 2005. (in Chinese))
    [14]
    杨保存. 南疆盐渍土路基盐—冻胀变形特性研究[D]. 重庆: 重庆大学, 2008. (YAO Bao-cun. Study on salt frost heave deformation characteristics of saline soils subgrade in Southern Xinjiang[D]. Chongqing: Chongqing University, 2008. (in Chinese))
    [15]
    高江平, 吴家惠. 硫酸盐渍土盐胀特性的单因素影响规律研究[J]. 岩土工程学报, 1997, 19(1): 39-44. (GAO Jiang-ping, WU Jia-hui. Study on laws of the single factor effect upon heaving properties of the sulphated salty soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 39-44. (in Chinese)).
    [16]
    邴 慧, 马 巍. 盐渍土冻结温度的试验研究[J]. 冰川冻土, 2011, 33(5): 1106-1113. (BING Hui, MA Wei. Experimental study on freezing point of saline soil[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1106-1113. (in Chinese))
    [17]
    冯忠居, 乌延玲, 成 超, 等. 板块状盐渍土的盐溶和盐胀特性研究[J]. 岩土工程报, 2010, 32(9): 1439-1442. (FENG Zhong-ju, WU Yan-ling, CHENG Chao, et al. salt dissolution and salt heaving characteristics of plate-like saline soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1439-1442. (in Chinese))
    [18]
    陈肖柏, 邱国庆, 王雅卿, 等. 重盐土在温度变化时的物理化学性质和力学性质[J]. 中国科学(A辑), 1988(4): 429-438. (CHEN Xiao-bai, QIU Guo-qing, WANG Ya-qing, et al. Physical chemistry and mechanical properties of saline soils during temperature change[J]. China Science (A edition), 1988(4): 429-438. (in Chinese))
    [19]
    彭铁华, 李 斌. 硫酸盐渍土在不同降温速率下的盐胀规律[J]. 冰川冻土, 1997, 19(3): 62-67. (PENG Tie-hua, LI Bing. The salt heave of sulfate salty soil under different coooling rates[J]. Journal of Glaciology and Geocryology, 1997, 19(3): 62-67. (in Chinese))
    [20]
    STEIGER M, ASMUSSEN S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4-H2O and the generation of stress[J]. Geochimica Et Cosmochimica Acta, 2008, 72(17): 4291-4306.
    [21]
    靳治良, 陈港泉, 钱 玲, 等. 莫高窟壁画盐害作用机理研究(Ⅰ)[J]. 敦煌研究, 2008, 6: 50-53. (JIN Zhi-liang, CHENG Gang-quan, QIAN Lin, et al. Research on mechanics of salt Efflorescence of wall paintings in the Mogao Grottoes (I)[J]. Dunhuang Research, 2008, 6: 50-53. (in Chinese))
    [22]
    万旭升, 赖远明. 硫酸钠溶液和硫酸钠盐渍土的冻结温度及盐晶析出试验研究[J]. 岩土工程学报, 2013, 35(11): 2090-2096. (WAN Xu-sheng, LAI Yuan-ming. Experimental study on freexing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2090-2096. (in Chinese))
    [23]
    RIJNIERS L A, PEL L, HUININK H P, et al. Salt crystallization as damage mechanism in porous building materials—a nuclear magnetic resonance study[J]. Magnetic Resonance Imaging, 2005, 23: 273-276.
    [24]
    邓友生, 周成林. 硫酸钠溶液的盐胀与冻胀[J]. 冰川冻土, 2009, 31(5): 920-924. (DENG You-sheng, ZHOU Cheng-lin. Salt expansion and frost heave of sodium sulphate solution[J]. Journal of Glaciology and Geocryology, 2009, 31(5): 920-924. (in Chinese))
    [25]
    STEPHEN H, STEPHEN T. Solubilities of inorganic and organic compounds[M]. Oxford: Pergamon Press, 1963.
    [26]
    HAYNES W M. CRC handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2013.
    [27]
    SPEIGHT J G. Lange’s handbook of chemistry[M]. New York: McGraw-Hill, 2005.
    [28]
    GARRETT D E. Sodium sulfate: handbook of deposits, processing, & use[M]. New York: Academic Press, 2001.
    [29]
    SEIDELL A. Solubilities of inorganic and organic substances[M]. New York: D Van Nostrand Company, 1911.
    [30]
    LINKE W F. Solubilities: inorganic and metal-organic compounds: a compilation of solubility data from the periodical literature[M]. Princeton: Van Nostrand, 1958.
    [31]
    KELL G S. Density, thermal expansivity, and compressibility of liquid water from 0℃ to 150℃: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale[J]. Journal of Chemical & Engineering Data, 1975, 20(1): 97-105.
    [32]
    PITZER K S. Activity coefficients in electrolyte solutions[M]. Boca Raton: CRC Press, 1991.
    [33]
    ARCHER D G, WANG P. The dielectric constant of water and debye‐hückel limiting law slopes[J]. Journal of Physical and Chemical Reference Data, 1990, 19(2): 371-411.
    [34]
    FERNÁNDEZ D P, GOODWIN A R H, LEMMON E W, et al. A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and debye-hückel coefficients[J]. Journal of Physical and Chemical Reference Data, 1997, 26(4): 1125-1166.
    [35]
    KRUMGALZ B S, POGORELSKY R, SOKOLOV A, et al. Volumetric ion interaction parameters for single-solute aqueous electrolyte solutions at various temperatures[J]. Journal of Physical and Chemical Reference Data, 2000, 29(5): 1123-1140.
    [36]
    CLEGG S L, WEXLER A S. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The Solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50°C, Including Extrapolations to Very Low Temperature and to the Pure Liquid State, and NaHSO4, NaOH, and NH3 at 25°C[J]. The Journal of Physical Chemistry A, 2011, 115(15): 3393-3460.
    [37]
    ZEZIN D, DRIESNER T, SANCHEZ-VALLE C. Volumetric properties of Na 2 SO 4 -H 2 O and Na 2 SO 4 -NaCl-H 2 O solutions to 523.15 K, 70 MPa[J]. Journal of Chemical & Engineering Data, 2015, 60(4): 1181-1192.
    [38]
    LIDE D R. Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity, in CRC Handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2010.
    [39]
    APELBLAT A, MANZUROLA E, OREKHOVA Z. Thermodynamic properties of aqueous electrolyte solutions. volumetric and compressibility studies in 0.1 mol·kg -1 , 0.5 mol·kg -1 , and 1.0 mol·kg -1 sodium carbonate and sodium Sulfate solutions at temperatures from 278.15 K to 323.15 K[J]. Journal of Chemical & Engineering Data, 2009, 54(9): 2550-2561
    [40]
    SURDO A L, ALZOLA E.M, MILLERO F J. The (p, V, T) properties of concentrated aqueous electrolytes I. Densities and apparent molar volumes of NaCl, Na 2 SO 4 , MgCl 2 , and MgSO 4 solutions from 0.1 mol·kg -1 to saturation and from 273.15 to 323.15 K[J]. The Journal of Chemical Thermodynamics, 1982, 14(7): 649-662.
    [41]
    WASHBURN E W. International critical tables of numerical data, physics, chemistry and technology[M]. New York: McGraw-Hill, 1928.
    [42]
    CONNAUGHTON L, HERSHEY J P, MILLERO F. PVT properties of concentrated aqueous electrolytes: V. Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100°C[J]. Journal of Solution Chemistry, 1986, 15(12): 989-1002.
    [43]
    CHEN C-TA, CHEN J H, MILLERO F J. Densities of sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate aqueous solutions at 1 atm from 0 to 50℃and from 0.001 to 1.5 m[J]. Journal of Chemical & Engineering Data, 1980, 25(4): 307-310.
    [44]
    MILLERO F J, KNOX J H. Apparent molal volumes of aqueous sodium fluoride, sodium sulfate, potassium chloride, potassium sulfate, magnesium chloride, and magnesium sulfate solutions at 0℃ and 50℃[J]. Journal of Chemical & Engineering Data, 1973, 18(4): 407-411.
    [45]
    ISONO T. Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate[J]. Journal of Chemical & Engineering Data, 1984, 29(1): 45-52.
    [46]
    FABUSS B M, KOROSI A, HUG A K M S. Densities of binary and ternary aqueous solutions of NaCl, Na 2 SO 4 and MgSO 4 of Sea waters, and sea water concentrates[J]. Journal of Chemical & Engineering Data, 1966, 11(3): 325-331.
    [47]
    PHUTELA RC, PITZER K S. Densities and apparent molar volumes of aqueous magnesium sulfate and sodium sulfate to 473 K and 100 bar[J]. Journal of Chemical & Engineering Data,1986, 31(3): 320-327.
    [48]
    OBŠIL M, et al. Densities and Apparent Molar Volumes of Na 2 SO 4 (aq) and K 2 SO 4 (aq) at Temperatures from 298 K to 573 K and at Pressures up to 30 MPa[J]. Journal of Chemical & Engineering Data,1997, 42(1): 137-142.
    [49]
    MILLERO F J, WARD G K, CHETIRKIN P V. Relative sound velocities of sea salts at 25°C[J]. The Journal of the Acoustical Society of America, 1977, 61(6): 1492-1498.
    [50]
    AZIZOV N D, AKHUNDOV T S. The bulk properties of the Na 2 SO 4 -H 2 O system in a wide range of the parameters of state[J]. High Temperature, 2000, 38(2): 203-209.
    [51]
    AL GHAFRI S Z, MAITLAND G C, TRUSLER J P M. Densities of SrCl 2 (aq), Na 2 SO 4 (aq), NaHCO 3 (aq), and two synthetic reservoir brines at temperatures between (298 and 473) K, pressures up to 68.5 MPa, and molalities up to 3 mol·kg -1 [J]. Journal of Chemical & Engineering Data, 2013, 58(2): 402-412.
    [52]
    TRIMBLE H M. The solubility of potassium permanganate in solutions of potassium sulfate and of sodium, sulfate[J]. Journal of the American Chemical Society, 1922, 44(3): 451-460.
    [53]
    PEARCE J N, ECKSTROM H C. Vapor pressures and partial molal volumes of aqueous solutions of the alkali sulfates at 25[J]. Journal of the American Chemical Society, 1937, 59(12): 2689-2691.
    [54]
    KOROSI A, FABUSS B M. Viscosities of binary aqueous solutions of sodium chloride, potassium chloride, sodium sulfate, and magnesium sulfate at concentrations and temperatures of interest in desalination processes[J]. Journal of Chemical & Engineering Data, 1968, 13(4): 548-552.
    [55]
    TANG I, MUNKELWITZ H. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1994, 99(D9): 18801-18808.
    [56]
    RARD J, MILLER D. The mutual diffusion coefficients of Na 2 SO 4 -H 2 O and MgSO 4 -H 2 O at 25°C from Rayleigh interferometry[J]. Journal of Solution Chemistry, 1979, 8(10): 755-766.
    [57]
    GIBSON R E. The system sodium sulphate-water: I. The densities and specific volumes of aqueous solutions of sodium sulphate between 25 amd 40 degrees, and the fictive volumes of sodium sulphate in solution[J].Journal of Physical Chemistry, 1927, 31(4): 496-510.
    [58]
    DUNN L. Apparent molar volumes of electrolytes. Part 1.—Some 1—1, 1—2, 2—1, 3—1 electrolytes in aqueous solution at 25°C[J]. Transactions of the Faraday Society, 1966, 62: 2348-2354.
    [59]
    SANCHEZ M M, et al. Densities and molar volumes of Na 2 SO 4 and MgSO 4 in ethanol + water mixtures at 15, 25, and 35℃[J]. Journal of Chemical & Engineering Data,1994, 39(3): 453-456.
    [60]
    HERVELLO M F, SÁNCHEZ A. Densities of univalent cation sulfates in ethanol + water solutions[J]. Journal of Chemical & Engineering Data, 2007, 52(3): 752-756.
    [61]
    OBŠIL M, MAJER V, GROLIER J-P E, et al. Volumetric properties of, and ion-pairing in, aqueous solutions of alkali-metal sulfates under superambient conditions[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(22): 4445-4451.
    [62]
    MAGALHÃES M C F, KÖNIGSBERGER E, MAY P M, et al. Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25°C[J]. Journal of Chemical & Engineering Data, 2002, 47(3): 590-598.
    [63]
    ZHUO K, CHEN Y, WANG W, et al. Volumetric and viscosity properties of MgSO 4 /CuSO 4 in sucrose+ water solutions at 298.15 K[J]. Journal of Chemical & Engineering Data, 2008, 53(9): 2022-2028.
    [64]
    ELLIS A. Partial molal volumes in high-temperature water. Part III. Halide and oxyanion salts[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968: 1138-1143.

Catalog

    Article views (546) PDF downloads (375) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return