• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Yan-yan, JIANG Hao-chuan, YU Jin, TU Bing-xiong, LIU Shi-yu. Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006
Citation: CAI Yan-yan, JIANG Hao-chuan, YU Jin, TU Bing-xiong, LIU Shi-yu. Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1973-1980. DOI: 10.11779/CJGE201611006

Experimental study on mechanical properties and mesoscopic numerical simulation of cement-solidified coastal aeolian sands

More Information
  • Received Date: October 12, 2015
  • Published Date: November 19, 2016
  • Coastal aeolian sand is treated as a kind of special soil for its loose structure, poor stability and poor gradation. Cement solidification is a common method for strengthening. However, the influence rule and microscopic mechanism of cement dosage on the mechanical properties of aeolian sand are still unclear. The CD tests under various effective confining pressures (50, 100 and 150 kPa) on aeolian sand solidified by different amounts (0%, 4% and 6%) of cement are carried out using GDS triaxial apparatus. Based on the micrograph of cemented sand and experimental data, the microstructural models for cemented coastal aeolian sand are established using PFC2D. The mesoscopic numerical analysis of triaxial tests is presented. The results show that the cemented coastal aeolian sand is strain-softened. And the cement dosage makes great contribution to the strength of coastal aeolian sand, but less influence on the volumetric strain. The PFC model with parallel connection can effectively reflect the main mechanical behaviors of cemented coastal aeolian sand. The cement dosage has a significant impact on bond-breaking number, coordination number and displacement field for the cemented coastal aeolian sand.
  • [1]
    BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(6): 223-237.
    [2]
    ISMAIL M A,JOER H A,SIM W H, et al. Effect of cement type on shear behavior of cemented calcareous soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(6): 520-529.
    [3]
    黄 新, 周国钧. 水泥加固土硬化机理初探[J]. 岩土工程学报, 1994, 16(1): 62-68. (HUANG Xin, ZHOU Guo-jun. Hardening mechanism of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(1): 62-68. (in Chinese))
    [4]
    CUCCOVILLO T, COOP MR. On the mechanics of structured sandss[J]. Géotechnique, 1999, 49(6): 741-760.
    [5]
    CUNDALL P A, STRACK O D L. The discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [6]
    IANG M J, YU H S, LEROUEIL S. A simple and efficient approach to capturing bonding effect in natural sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1158-1193.
    [7]
    JIANG M J, YU H S, HARRIS D. Bonds rolling resistance and its effect on yielding of bonded granulates by DEM analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 723-761.
    [8]
    WANG Y H, LEUNG S C. A particulate scale investigation of cemented sands behavior[J]. Canadian Geotechnical Journal,2008, 45(1): 29-44.
    [9]
    WANG Y H,LEUNG S C. Characterization of cemented sands by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2008, 134(7): 992-1004.
    [10]
    蒋明镜, 孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. 岩土力学, 2011, 32(6): 1849-1856. (JIANG Ming-jing, SUN Yu-gang. A DEM modelling of mechanical behaviour of artificially cemented sands[J]. Rock and Soil Mechanics, 2011, 32(6): 1849-1856. (in Chinese))
    [11]
    胡舜娥, 蔡燕燕, 俞 缙, 等. 水泥固化滨海风积砂三轴试验研究[J]. 地下空间与工程学报, 2014, 10(3): 573-579. (HU Shu-ne, CAI Yan-yan, YU Jin, et al. Experimental study of triaxial test of cement solidified coastal aeolian sands[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 573-579. (in Chinese))
    [12]
    王树娟. 掺风积沙水泥复合土力学性能的研究[D]. 呼和浩特: 内蒙古农业大学, 2009. (WANG Shu-juan. The wind deposited sands mixed cement composite soil mechanics performance of research[D]. Huhehaote: Inner Mongolia Agricultural University, 2009. (in Chinese))
    [13]
    SHINOHARA K, OIDA M, GOLMAN B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(3): 131-136.
    [14]
    KANDASAMI R K, MURTHY T G. Effect of intermediate principal stress on the mechanical behavior of angular sand[J]. Geotechnical Special Publication, 2014(236): 406-415.
    [15]
    周 健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京: 科学出版社, 2008. (ZHOU Jian, JIA Min-cai. Soil fine view model test and numerical simulation[M]. Beijing: Science Press, 2008. (in Chinese))
    [16]
    周 健, 池 永, 池毓蔚, 等. 颗粒流方法及PFC 2D 程序[J]. 岩土力学, 2000, 21(3): 271-274. (ZHOU Jian, CHI Yong, CHI Yu-wei, et al. The method of particle flow and PFC 2D code[J]. Rock and Soil Mechanics, 2000, 21(3): 271-274. (in Chinese))
    [17]
    徐金明, 谢芝蕾, 贾海涛. 石灰岩细观力学特性的颗粒流模拟[J]. 岩土力学, 2010, 31(2): 390-395. (XU Jin-ming, XIE Zhi-lei, JIA Hai-tao. Simulation of mesomechanical properties of limestone using particle flow code[J]. Rock and Soil Mechanics, 2010, 31(2): 390-395. (in Chinese))
    [18]
    尹小涛, 葛修润, 李春光, 等. 加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(1): 2610-2615. (YIN Xiao-tao, GE Xiu-run, LI Chun-guang, et al. Influences of loading rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 2610-2615. (in Chinese))
  • Related Articles

    [1]MU Cheng-lin, HUANG Run-qiu, PEI Xiang-jun, PEI Zuan, LU Jun-fu. Evaluation of rock stability based on combined weighting-unascertained measurement theory[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1057-1063. DOI: 10.11779/CJGE201606012
    [2]ZHAO Gao-wen, FAN Heng-hui, SHI Mei, MA Xiao-li, LI Yu-gen, WEI Feng. Dispersion mechanism of soils revealed by grey system theory and verification tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 186-190. DOI: 10.11779/CJGE2015S2036
    [3]ZHENG Wen-bo, ZHUANG Xiao-ying, LI Yao-ji, CAI Yong-chang. Graph theory for stability analysis of rock/soil slopes based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2045-2052.
    [4]ZHAO Jian-bin, Shi Yong-qiang, YANG Jun. Influencing factors for bearing capacity of statically pressed pipe piles based on grey theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 394-398.
    [5]XU Xinghua, SHANG Yuequan. Integrated zonation of landslide stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 669-674.
    [6]TU Yumin, JIN Zhiyu. Stability analysis of soil-nailing protection structure based on the soil-arch effect[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 792-795.
    [7]LUO Xianqi, GE Xiurun, ZHENG Hong. Analysis on effect replacement of softrock of Shuibuya underground powerhouse[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 463-467.
    [8]XU Weiya, JIANG Zhongming, SHI Anchi. Slope stability analysis using fuzzy sets theory[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 409-413.
    [9]Feng Yuguo. Application of Grey Optimal Theory Model in the Stability Classification of Adjoining Rock of Underground Construction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 62-66.
    [10]Luo Guoyu, Liu Songyu, Yang Weidong. Analysis of Regional Stability by Theory of Preferred Plane[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 10-18.

Catalog

    Article views (339) PDF downloads (326) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return