• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JU Xiao-dong, FENG Wen-juan, ZHANG Yu-jun, ZHAO Hong-bo. Crystallization stresses in brittle porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1246-1253. DOI: 10.11779/CJGE201607011
Citation: JU Xiao-dong, FENG Wen-juan, ZHANG Yu-jun, ZHAO Hong-bo. Crystallization stresses in brittle porous media[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1246-1253. DOI: 10.11779/CJGE201607011

Crystallization stresses in brittle porous media

More Information
  • Published Date: July 24, 2016
  • The pore wall stress from crystallization of salts or water in rock materials is an important factor to induce weathering and freeze-thaw damage. The pore system of authentic materials is generalized into four kinds of interpenetrating independently ideal shapes as sphere, cylinder, ellipsoid and elliptic-cylinder. Then four types of heterogeneous pore system models are proposed based on the statistical distribution of quantity/volume of pores to their radii. Associated with the crystallization law of heterogeneous pore system, the theory of ideal shape pore crystallization stress and the average algorithm of crystallization stresses, the computing method and formulas for macro-level “average stress” derived from micro-level pore wall stresses of these four models are proposed. Finally, based on the crystallization progress of sodium chloride in heterogeneous spherical pore system, the evolution of macro-level triaxial “average stress” with invasion radius (corresponding to solution concentration of pore system) is discussed.
  • [1]
    CAHN J W. Surface sterss and the chemical equilibrium of small crystals: Ⅰ. The case of the isotropic surface[J]. Acta Metallurgica, 1980, 28: 1333-1338.
    [2]
    FAGERLUND G. Determination of pore-size distribution from freezing-point depression[J]. Materials and Structures, 1973, 6(3): 215-225.
    [3]
    TABER S. The mechanics of frost heaving[J]. J Geology, 1930, 38: 303-317.
    [4]
    VERBECK G J. Studied of “salt” scaling of concrete[J]. Highway Research Board Bulletin, 1957, 150: 1-17.
    [5]
    SCHERER G W. Freezing gels[J]. Journal of Non-Crystalline Solids, 1993, 155: 1-25.
    [6]
    SCHERER G W. Crystallization in pores[J]. Cement and Concrete Research, 1999, 29(8): 1347-1358.
    [7]
    ZUBER B, MARCHAND J. Modeling the deterioration of hydrated cement systems exposed to frost action Part 1: Description of the mathematical model[J]. Cement and Concrete Research, 2000, 30: 1929-1939.
    [8]
    COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 1689-1718.
    [9]
    COUSSY O. Deformation and stress from in-pore drying-induced crystallization of salt[J]. Journal of the Mechanics and Physics of Solids, 2006, 54: 1517-1547.
    [10]
    COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 1689-1718.
    [11]
    COUSSY O, MONTEIRO P. Unsaturated poroelasticity for crystallization in pores[J]. Computers and Geotechnics, 2007, 34: 279-290.
    [12]
    COUSSY O. Poromechanics[M]. West Sussex: John Wiley & Sons Ltd, 2004.
    [13]
    THEOULAKIS P, MOROPOULOU A. Microstructural and mechanical parameters determining the susceptibility of porous building stones to salt decay[J]. Construction and Building Matericals, 1997, 11(1): 65-71.
    [14]
    DIAMOND S, DOLCH W L. Generalized log-normal distribution of pore sizes in hydrated cement paste[J]. Journal of Colloid and Interface Science, 1972, 38(1): 234-244.
    [15]
    VAN Breugel K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (Ⅰ) Theory[J]. Cement and Concrete Research, 1995, 25(2): 319-331.
    [16]
    VAN Breugel K. Numerical simulation of hydration and microstructural development in hardening cement-based materials (Ⅱ) Application[J]. Cement and Concrete Research, 1995, 25(3): 522-530.
    [17]
    RUEDRICH J, SIEGESMUND S. Salt and ice crystallisation in porous sandstones[J]. Enviromental Geology, 2007, 52(2): 225-249.
    [18]
    JU Yang, YANG Yong-ming, SONG Zhen-duo, et al. A statistical model for porous structure of rocks[J]. Science in China (Series E), 2008, 51(11): 2040-2058.
    [19]
    SCHERER G W. Stress from crystallization of salts[J]. Cement and Concrete Research, 2004, 34: 1613-1642.
    [20]
    杨永明, 鞠 杨, 刘红彬, 等. 孔隙结构特征对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10): 2031-2038. (YANG Yong-ming, JU Yang, LIU Hong-bin, et al. Ingluence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2031-2038. (in Chinese))
    [21]
    琚晓冬, 冯文娟, 张玉军. 基于管径指数分布的毛细管束模型[J]. 河南理工大学学报(自然科学版), 2014, 33(6): 820-825. (JU Xiao-dong, FENG Wen-juna, ZHANG Yu-jun. A capillary bundle model based on aperture’s exponential distribution[J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33(6): 820-825. (in Chinese))
    [22]
    琚晓冬. 岩石类脆性孔隙材料结晶破坏机理研究[D]. 武汉: 中国科学院大学, 武汉岩土力学研究所. 2014. (JU Xiao-dong. Study on the mechanism of crystallization damage for the porous media of rocks[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2014. (in Chinese))
    [23]
    周维垣. 高等岩石力学[M]. 北京: 水利电力出版社, 1990. (ZHOU Wei-yuan. Advanced rock mechanics[M]. Beijing: Water Resources and Electric Power Press, 1990. (in Chinese))
    [24]
    VALENZA J JⅡ, SCHERER G W. A review of salt scaling: Ⅰ. Phenomenology[J]. Cement and Concrete Research, 2007, 37: 1007-1021.

Catalog

    Article views (391) PDF downloads (289) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return