• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Guo-wen, LU Dai-yue. Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1202-1211. DOI: 10.11779/CJGE201607006
Citation: XU Guo-wen, LU Dai-yue. Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1202-1211. DOI: 10.11779/CJGE201607006

Mechanical behavior of shield tunnel considering nonlinearity of flexural rigidity and leakage of joints

More Information
  • Received Date: June 20, 2015
  • Published Date: July 24, 2016
  • Partial leakage during operation of shield tunnel has great impact on the long-term safety of structures. It is difficult to simultaneously simulate partial leakage and mechanical properties of shield tunnel accurately. Hence, a combined simulation method is proposed. For partial leakage simulation, the homogeneous ring model is used and the corresponding seepage path is set at joint position. For mechanical calculation, a shell-spring-contact-ground model considering the nonlinearity of flexural rigidity of segment joints is established to replace the homogeneous ring model. The real stress state of lining is obtained by iterative calculation. The distribution of pore water pressure around tunnel and the mechanical behavior of structures are analyzed under different seepage flows and leakage locations. The results show that the pore water pressure decreases more significantly and the internal force of structures changes more obviously with the increasing seepage. The leaking joint close to tunnel hance has more obvious effect on its internal force. The affected areas of joint leakage exhibit consistency. Taking the leaking joint as the center, the 36-degree areas at its both sides are severely affected, the 48-degree and 60-degree areas are generally affected, and the remaining areas are weakly affected. For the composite strata, compared with these under hydrostatic pressure conditions, the upper and lower leakages lead to the increase of upper and lower positive bending areas, and the distribution of axial force along the whole ring is uneven. The average axial force at the leakage side is less than that at the non-leakage side, which is unfavorable to the safety of segment structures.
  • [1]
    张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004. (ZHANG Feng-xiang, ZHU He-hua, FU De-ming. Shiled tunnlling method[M]. Beijing: China Communications Press, 2004. (in Chinese))
    [2]
    张冬梅, 黄宏伟, 杨 俊. 衬砌局部渗流对软土隧道地表长期沉降的影响研究[J]. 岩土工程学报, 2005, 27(12): 1430-1436. (ZHANG Dong-mei, HUANG Hong-wei, YANG Jun. Influence of partial drainage of linings on long-term surface settlement over tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1430-1436. (in Chinese))
    [3]
    刘 印, 张冬梅, 黄宏伟. 盾构隧道局部长期渗漏水对隧道变形及地表沉降的影响分析[J]. 岩土力学, 2013, 34(1): 291-304. (LIU Yin, ZHANG Dong-mei, HUANG Hong-wei. Influence of long-term partial drainage of shield tunnel on tunnel deformation and surface settlement[J]. Rock and Soil Mechanics, 2013, 34(1): 291-304. (in Chinese)).
    [4]
    MAIR R J. Tunnelling and geotechnics: new horizons[J]. Géotechnique, 2008, 58(9): 695-736.
    [5]
    SHIN J H.A numerical study of the effect of groundwater movement on long-term tunnel behavior[J]. Géotechnique, 2002, 52(6): 391-403.
    [6]
    潘昌实, 译. 国际隧协小组研究报告-盾构隧道衬砌设计指南(草案) [J]. 世界隧道, 1997(2): 19-29. (PAN Cang-shi. ITA-Working Group Research-Design guidelines of shield tunnel lining (draft)[J]. World tunneling, 1997(2): 19-29. (in Chinese))
    [7]
    王志良. 上海运营地铁盾构法隧道变形特性及其结构性能研究[D]. 上海: 同济大学, 2010: 15-40. (WANG Zhi-liang. Study on deformation and structure characteristics of operation shield tunnel in Shanghai metro[D]. Shanghai: Tongji University, 2010: 15-40. (in Chinese))
    [8]
    WONGSAROJ, SOGA K, MAIR R J. Modelling of long-term ground response to tunneling under St James’s Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
    [9]
    黄宏伟, 刘 印, 张冬梅. 盾构隧道长期渗水对地表沉降及管片内力的影响[J]. 中国铁道科学, 2012, 33(6): 36-43. (HUANG Hong-wei, LIU Yin, ZHANG Dong-mei. Influence of long-term seepage of shield tunnel on inner force of segments and ground surface settlement[J]. China Railway Science, 2012, 33(6): 36-43. (in Chinese))
    [10]
    LI X, FLORES-BERRONES R. Time-dependent behavior of partially sealed circular tunnels[J]. Computers and Geotechnics, 2002, 29: 433-449.
    [11]
    陈俊生, 莫海鸿. 盾构隧道管片接头抗弯刚度的三维数值计算[J]. 铁道学报, 2009, 31(4): 87-91. (CHEN Jun-sheng, MO Hai-hong. Three dimensional FEM analysis on flexural rigidity of segment joints in shield tunnel[J]. Journal of the China Railway Society, 2009, 31(4): 87-91. (in Chinese))
    [12]
    闫治国, 丁文其, 沈碧伟, 等. 输水盾构隧道管片接头力学与变形模型研究[J]. 岩土工程学报, 2011, 33(8): 1185-1191. (YAN Zhi-guo, DING Wen-qi, SHEN Bi-wei, et al. Structural model for radial joints of water-conveyance shield tunnels[J]. Chinese Journal of Geotechnical Engineering,2011, 33(8): 1185-1191. (in Chinese))
    [13]
    朱 伟, 译. 隧道标准规范(盾构篇)及解说[M]. 北京:中国建筑工业出版社, 2006: 15-36. (ZU Wei, tran. Specification for tunnel (shield) and commentary[M]. Beijing: China Building Industry Press, 2006: 15-36. (in Chinese))
    [14]
    Itasca Consulting Group. Inc FLAC3D User’s Manual, Version3.0[R]. Itasca Consulting Group, 2004.
    [15]
    何 川, 张建刚, 苏宗贤. 大断面水下盾构隧道结构力学特性研究[M]. 北京: 科学出版社, 2010: 83-89. (HE Chuan, ZHANG Jian-gang, SU Zong-xian. Study on mechanical properties of underwater shield tunnel with large section[M]. Beijing: Science Press, 2010: 83-89. (in Chinese))
    [16]
    封 坤. 大型水下盾构隧道管片衬砌结构力学性能研究[D]. 成都: 西南交通大学, 2012: 32-65. (FENG Kun. Research on mechanical behavior of segmental lining structure of underwater shield tunnel with large cross-section[D]. Chengdu: Southwest Jiaotong University, 2012: 32-65. (in Chinese))
    [17]
    CAVALARO S.H.P, AGUADO A. Packer behavior under simple and coupled stresses[J]. Tunnelling and Underground Space Technology, 2012, 28: 159-173.
    [18]
    Ngoc-Anh Do, Daniel Dias, Pierpaolo Oreste, et al. 2D numerical investigation of segmental tunnel lining behavior[J]. Tunnelling and Underground Space Technology, 2013, 37: 115-127.
    [19]
    张建刚. 大断面水下盾构隧道的相似模型试验及结构内力分析[D]. 成都: 西南交通大学, 2008: 145-150. (ZHANG Jian-gang The model test and structural internal force analysis of large section underwater tunnel[D]. Chengdu: Southwest Jiaotong University, 2008: 145-150. (in Chinese))
    [20]
    竺维彬, 鞠世健. 复合地层中的盾构施工技术[M]. 北京: 中国科学技术出版社, 2006: 1-20. (ZHU Wei-bing, JU Shi-jian. Shield construction technology in complex stratum[M]. Beijing: Chinese Science and Technology Press, 2006: 1-20. (in Chinese))
    [21]
    周济民. 水下盾构法隧道双层衬砌结构力学特性[D]. 成都: 西南交通大学, 2012: 104-112. (ZHOU Ji-min. Research on mechanical behavior of double-layer lining structure for underwater shield tunnel[D]. Chengdu: Southwest Jiaotong University, 2012: 104-112. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return