• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Guang-chao, LIU Han-long, KONG Gang-qiang, DING Xuan-ming. Model tests on effect of vibration waves on dynamic response of XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1021-1029. DOI: 10.11779/CJGE201606007
Citation: SUN Guang-chao, LIU Han-long, KONG Gang-qiang, DING Xuan-ming. Model tests on effect of vibration waves on dynamic response of XCC pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1021-1029. DOI: 10.11779/CJGE201606007

Model tests on effect of vibration waves on dynamic response of XCC pile-raft composite foundation

More Information
  • Received Date: April 25, 2015
  • Published Date: June 24, 2016
  • Based on large scale model test system, cast-in-situ XCC pile-raft composite foundation embedded in sand is studied. Under the sine and "M" wave loads, the change laws of X pile-raft composite foundation are analyzed from aspects of cumulative settlement, dynamic displacement amplitude, dynamic stiffness and vibration velocity. The dynamic response of X pile-raft composite foundation is preliminarily revealed. The test results show that the settlement curve (s-N) of this composite foundation (s is the settlement and N is the load cycle) can be discribed by the logarithmic functions. The dynamic displacement amplitude and dynamic stiffness are related to the form of load and its amplitude. The vibration velocity gradually decreases with the increasing depth. The gravel cushion exerts a good damping effect on the soil in the process of broadcasting velocity to the soil foundation.The research results provide a reference for the use of pile-raft composite foundation.
  • [1]
    TB 10621—2014 高速铁路设计规范[S]. 2014. (TB 10621—2014 Code for design of high speed railway[S]. 2014. (in Chinese))
    [2]
    陈洪运, 马建林, 陈红梅, 等. 桩筏结构复合地基中筏板受力分析的理论计算模型与试验研究[J]. 岩土工程学报, 2014, 36(4): 646-653. (CHEN Hong-yun, MA Jian-lin, CHEN Hong-mei, et al. Theoretical and experimental studies on forces acting on raft of pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 646-653. (in Chinese))
    [3]
    FENG S Y, WEI L M, HE C Y, et al. A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect[J]. Journal of Central South University, 2014, 21(7): 2921-2927.
    [4]
    YANG Q, LENG W M, ZHANG S, et al. Long-term settlement prediction of high-speed railway bridge pile foundation[J]. Journal of Central South University, 2014, 21(6): 2415-2424.
    [5]
    CHEN Z W, ZHAI W M, CAI C B, et al. Safety threshold of high-speed railway pier settlement based on train-track- bridge dynamic interaction[J]. Science China (Technological Sciences), 2015, 58(2): 202-210.
    [6]
    CHEBLI H, CLOUTEAU D, SCHMITT L. Dynamic response of high-speed ballasted railway tracks: 3D periodic model and in situ measurements[J]. Soil Dynamics and Earthquake Engineering, 2008, 28: 118-131.
    [7]
    HALL L. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering, 2003, 23: 403-413.
    [8]
    THACH P N, LIU H L, KONG G Q. Vibration analysis of pile-supported embankments under high-speed train passage[J]. Soil Dynamics and Earthquake Engineering, 2013, 55: 92-99.
    [9]
    薛富春, 张建民. 移动荷载作用下高速铁路轨道-路基-地基耦合系统振动加速度的空间分布特征[J]. 岩土工程学报, 2014, 36(12): 2179-2187. (XUE Fu-chun, ZHANG Jian-min. Spatial distribution of vibration accelerations in coupled rail-embankment-foundation system on high-speed railway under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2179-2187. (in Chinese))
    [10]
    JIANG Y, HAN J, ZHENG G. Numerical analysis of a pile-slab-supported railway embankment[J]. Acta Geotechnica, 2014, 9(3): 499-511.
    [11]
    徐林荣, 王宏贵, 左王申, 等. 高速铁路沉降控制复合桩基的性状试验研究[J]. 岩土力学, 2012, 33(9): 2605-2612. (XU Lin-rong, WANG Hong-gui, ZUO Wang-shen, et al. Test study of performance of composite pile foundation of high-speed railway controlling settlement[J]. Rock and Soil Mechanics, 2012, 33(9): 2605-2612. (in Chinese))
    [12]
    李 波, 冷景岩. 高速铁路CFG桩-筏结构沉降控制现场试验[J]. 铁道工程学报, 2014, 31(2): 48-52. (LI Bo, LENG Jing-yan. Research on settlement control effect of cfg pile-raft structure based on field test of high speed railway[J]. Journal of Railway Engineering Society, 2014, 31(2): 48-52. (in Chinese))
    [13]
    付 强, 刘汉龙, 庄 妍, 等. 高速铁路CFG桩筏复合地基沉降变形特性研究[J]. 铁道科学与工程学报, 2014, 11(6): 45-51. (FU Qiang, LIU Hong-long, ZHUANG Yan, et al. Analysis of settlement characteristic of CFG piled raft composite foundation in high-speed railway[J]. Journal of Railway Science and Engineering, 2014, 11(6): 45-51. (in Chinese))
    [14]
    张继文, 曾俊铖, 涂永明, 等. 京沪高速铁路CFG桩-筏复合地基现场试验研究[J]. 铁道学报, 2011, 33(1): 83-88. (ZHANG Ji-wen, ZENG Jun-cheng, TU Yong-ming, et al. Experimental study on CFG pile-raft composite foundation of Beijing-Shanghai high-speed railway[J]. Journal of the China Railway Society, 2011, 33(1): 83-88. (in Chinese))
    [15]
    SHAER A A, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration, 2008, 316: 211-233.
    [16]
    ISHIKAWAI T, SEKINEIIA E, MIURA S. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48(5): 691-703.
    [17]
    肖 宏, 蒋关鲁, 魏永幸, 等. 客运专线无砟轨道桩网结构模型试验研究[J]. 铁道学报, 2007, 29(2): 126-131. (XIAO Hong, JIANG Guan-lu, WEI Yong-xing, et al. Model test of column-net structure for dedicated passenger line unballasted track[J]. Journal of the China Railway Society 2007, 29(2): 126-131. (in Chinese))
    [18]
    詹永祥, 蒋关鲁, 牛国辉, 等. 桩板结构路基动力模型试验研究[J]. 岩土力学, 2008, 29(8): 2097-2102. (ZHAN Yong-xiang, JIANG Guan-lu, NIU Guo-hui, et al. Model experimental research on dynamic performance of pile-plank embankment[J]. Rock and Soil Mechanics, 2008, 29(8): 2097-2102. (in Chinese))
    [19]
    刘汉龙, 刘芝平, 王新泉. 现浇X形混凝土桩截面几何特性的分析[J]. 中国铁道科学, 2009, 30(1): 17-23. LIU Han-long, LIU Zhi-ping, WANG Xin-quan. Analysis on section geometry character of X style vibro-pile[J]. China Railway Science, 2009, 30(1): 17-23.
    [20]
    LIU H L, Zhou H, KONG G Q. XCC pile installation effect in soft soil ground: A simplified analytical model[J]. Computers and Geotechnics, 2014, 62(7): 268-282.
    [21]
    KONG G Q, ZHOU H, DING X M , CAO Z H. Measuring effects of X-section pile installation in soft clay[J]. Proceedings of ICE - Geotechnical Engineering, 2015, 168(4): 296-305.
    [22]
    孔纲强, 刘汉龙, 丁选明, 等. 现浇X形桩复合地基桩土应力比及负摩阻力现场试验[J]. 中国公路学报, 2012, 25(1): 8-12, 20. (KONG Gang-qiang, LIU Han-long, DING Xuan-ming, et al. Field test of pile-soil stress ratio and negative skin friction of composite X-section cast-in-place pile foundation[J]. China Journal of Highway and Transport, 2012, 25(1): 8-12, 20. (in Chinese))
    [23]
    边学成, 蒋红光, 金皖锋, 等. 板式轨道-路基相互作用及荷载传递规律的物理模型试验研究[J]. 岩土工程学报, 2012, 34(8): 1488-1495. (BIAN Xue-cheng, JIANG Hong-guang, JIN Wan-feng, et al. Full-scale model tests on slab track-subgrade interaction and load transfer in track system[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1488-1495. (in Chinese))
    [24]
    JGJ 79—2012 建筑地基处理技术规范[S]. 2012. (JGJ 79—2012 Technical code for ground treatment of buildings[S]. 2012. (in Chinese))
    [25]
    杨龙才, 郭庆海, 周顺华, 等. 高速铁路桥桩在轴向循环荷载长期作用下的承载和变形特性试验研究[J]. 岩石力学与工程学报, 2005, 24(13): 2362-2368. (YANG Long-cai, GUO Qing-hai, ZHOU Shun-hua, et al. Dynamic behaviors of pile foundation of high-speed railway bridge under long-time cyclic loading in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2362-2368. (in Chinese))
    [26]
    陈竹昌, 徐 和. 土类对轴向循环荷载下桩性状的影响[J]. 同济大学学报, 1988, 17(3): 329-336. (CHENG Zhu-chang, XU He. Influence of soil type on behaviour of cyclic axial loaded[J]. Journal of Tongji University, 1988, 17(3): 329-336. (in Chinese))

Catalog

    Article views (584) PDF downloads (418) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return