• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Ding-jian, TANG Hui-ming, LI Chang-dong, LI Chun, LIN Cheng-yuan. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005
Citation: WANG Ding-jian, TANG Hui-ming, LI Chang-dong, LI Chun, LIN Cheng-yuan. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. DOI: 10.11779/CJGE201605005

Theoretical study on earth pressure on shallow tunnel considering principal stress rotation

More Information
  • Received Date: July 01, 2015
  • Published Date: May 24, 2016
  • The traditional analytical methods for calculating the earth pressure on shallow tunnel are irrespective of the principal stress rotation, and do not reveal the real stress state of soils, and thus result in inaccurate values. A new quantitative method is proposed to acquire the earth pressure on shallow tunnel in sandy soil considering the principal stress rotation. The rotation process and the stress state are firstly analyzed based on the generalized collapse mode for surrounding soil. To obtain the vertical pressure on overlying soil, the equilibrium equation for the horizontal differential layer is established, considering the corresponding relationship among the lateral interlaminar stress, average interlaminar stress and average vertical stress. Eventually the earth pressure is derived by the equilibrium equation for the lateral soils of tunnel. The results show that the ratio of vertical to major principal stress decreases with the increase of the distance to center line, and it presents a decreasing-to-increasing trend with the increase of the internal friction angle. The values of earth pressure calculated by the proposed method fit well with the experimental results when the tunnel is shallow. The new method is even superior to the method irrespective of the principal stress rotation and Terzaghi’s semi-empirical method. The accuracy of the proposed method is validated. It may provide a theoretical basis for the design of shallow tunnel.
  • [1]
    孙 钧, 侯学渊. 上海地区圆形隧道设计的理论和实践[J]. 土木工程学报, 1984, 17(3): 35-46. (SUN Jun, HOU Xue-yuan. Design theory and practice of circular tunnels in Shanghai area[J]. China Civil Engineering Journal, 1984, 17(3): 35-46. (in Chinese))
    [2]
    郑颖人, 邱陈瑜, 张 红, 等. 关于土体隧洞围岩稳定性分析方法的探索[J]. 岩石力学与工程学报, 2008, 27(10): 254-260. (ZHENG Ying-ren, QIU Chen-yu, ZHANG Hong, et al. Exploration of stability analysis methods of surrounding rocks in soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 254-260. (in Chinese))
    [3]
    朱合华, 黄 锋, 徐前卫. 变埋深下软弱破碎隧道围岩渐进性破坏试验与数值模拟[J]. 岩石力学与工程学报, 2010, 29(6): 1113-1122. (ZHU He-hua, HUANG Feng, XU Qian-wei. Model test and numerical simulation for progressive failure of weak and fractured tunnel surrounding rock under different overburden depths[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1113-1122. (in Chinese))
    [4]
    ATKINSON J H, POTTS D M. Stability of a shallow circular tunnel in cohesionless soil[J]. Géotechnique, 1977, 27(2): 203-215.
    [5]
    DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416.
    [6]
    YAMAMOTO K, LYAMIN A V, WILSON D W, et al. Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading[J]. Computers and Geotechnics, 2011, 38(4): 504-514.
    [7]
    杨 峰, 阳军生. 浅埋隧道围岩压力确定的极限分析方法[J]. 工程力学, 2008, 25(7): 179-184. (YANG Feng, YANG Jun-sheng. Limit analysis method for determination of earth pressure on shallow tunnel[J]. Engineering Mechanics, 2008, 25(7): 179-184. (in Chinese))
    [8]
    YANG X, YANG Z, LI Y, et al. Upper bound solution for supporting pressure acting on shallow tunnel based on modified tangential technique[J]. Journal of Central South University, 2013, 20: 3676-3682.
    [9]
    程小虎. 密实砂土及硬黏土中圆形隧道的竖向支护压力[J]. 岩石力学与工程学报, 2014, 33(4): 857-864. (CHENG Xiao-hu. Earth pressure on circular tunnel in dense sand and hard clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 857-864. (in Chinese))
    [10]
    谢家烋. 浅埋隧道的地层压力[J].土木工程学报, 1964, 10(6): 58-70. (XIE Jia-xiu. Earth pressure on shallow burial tunnel[J]. China Civil Engineering Journal, 1964, 10(6): 58-70. (in Chinese))
    [11]
    TERZAGHI K. Theoretical soil mechanics[M]. New York: John Wiley and Sons, 1943: 37-42.
    [12]
    LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground[J]. Journal of the Chines Institute of Engineers, 2004, 27(7): 1021-1032.
    [13]
    陈若曦, 朱 斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi 松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. (CHEN Ruo-xi, ZHU Bin, CHEN Yun-min. Modified Terzaghi looseningearth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese))
    [14]
    GB50157–2013 地铁设计规范[S]. 2013. (GB50157–2013 Code for design of metro[S]. 2013. (in Chinese))
    [15]
    TB10003–2005, J449–2005 铁路隧道设计规范[S]. 2005. (TB10003–2005, J449–2005 Code for design on tunnel of railway[S]. 2005. (in Chinese))
    [16]
    PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643-653.
    [17]
    应宏伟, 蒋 波, 谢康和. 考虑土拱效应的挡土墙主动土压力分布[J]. 岩土工程学报, 2007, 29(5): 717-722. (YING Hong-wei, JIANG Bo, XIE Kang-he. Distribution of active earth pressure against retaining walls considering arching effects[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 717-722. (in Chinese))
    [18]
    涂兵雄, 贾金青. 考虑土拱效应的黏性填土挡土墙主动土压力研究[J]. 岩石力学与工程学报, 2012, 31(5): 1064-1070. (TU Bing-xiong, JIA Jin-qing. Research on active earth pressure behind rigid retaining wall from clayey backfill considering soil arching effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 1064-1070. (in Chinese))
    [19]
    蔺 港, 孔令刚, 詹良通, 等. 基于太沙基土拱效应考虑基质吸力影响的松动土压力计算模型[J]. 岩土力学, 2015, 36(7): 2095-2104. (LIN Gang, KONG Ling-gang, ZHAN Liang-tong, et al[J]. Rock and Soil Mechanics, 2015, 36(7): 2095-2104. (in Chinese))
    [20]
    周小文, 濮家骝, 包承纲. 隧洞拱冠砂土位移与破坏的离心模型试验研究[J]. 岩土力学, 1999, 20(2): 32-36. (ZHOU Xiao-wen, PU Jia-liu, BAO Cheng-gang. A study of the movement and failure characteristics of sand mass above the crown of a tunnel[J]. Rock and Soil Mechanics, 1999, 20(2): 32-36. (in Chinese))
    [21]
    王明年, 郭 军, 罗禄森, 等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157-1162. (WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechanics, 2010, 31(4): 1157-1162. (in Chinese))
    [22]
    林培源. 隧道侧向压力问题的探讨[J]. 土木工程学报, 1982, 15(1): 54-62. (LIN Pei-yuan. On the lateral pressure of tunnel linings[J]. China Civil Engineering Journal, 1982, 15(1): 54-62. (in Chinese))
    [23]
    侯学渊. 隧道设计模型、理论与试验[J]. 岩土工程学报, 1984, 6(3): 35-43. (HOU Xue-yuan. Design model, theory and test of tunnel[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 35-43. (in Chinese))
  • Related Articles

    [1]Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355
    [2]XIAO Wei-min, HUANG Wei, DING Mi, LI Zhi-jian. Method for preparing artificial columnar jointed rock mass specimens by using 3D printing technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 256-260. DOI: 10.11779/CJGE2018S2051
    [3]XIONG Chun-bao, LI Zhi, SUN Xuan, ZHAI Jing-sheng. Stability analysis of submarine pipelines based on 3D model reconstruction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 53-56. DOI: 10.11779/CJGE2017S2014
    [4]AI Zhi-yong, HU Ya-dong. Uncoupled analytical layer-element for 3D transversely isotropic multilayered foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 717-720.
    [5]ZHAO Yan-lin, WANG Wei-jun, WAN Wen, ZHAO Fu-jun, LI Shu-qing. Coupling mechanism of seepage-fracture in fractured rock mass and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 677-685.
    [6]A model for unsaturated seepage flows in rock fracture and its calculation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [7]Coupling model of seepage-damage-fracture in fractured rock masses (extended flac3D model) and its appliance[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [8]CHEN Pingshan, FANG Yingguang, MO Haihong, ZHANG Gongxin, DONG Zhiliang. Analysis of 3D FEM for soft foundation improved by vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 564-570.
    [9]DONG Zhigao, WU Jimin, HUANG Yong. Simulation of solute transport in two-dimensional fracture network[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1256-1260.
    [10]ZHANG Yujun. Model of thermo-hydro-mechanical coupling for cracked rock mass and its 2D FEM analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 288-294.

Catalog

    Article views (509) PDF downloads (378) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return