• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Yu-min, HE Sen-kai, WU Hai-qing, XU Jun. Model tests on liquefaction resistance of desaturation measures of electrolysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 726-733. DOI: 10.11779/CJGE201604018
Citation: CHEN Yu-min, HE Sen-kai, WU Hai-qing, XU Jun. Model tests on liquefaction resistance of desaturation measures of electrolysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 726-733. DOI: 10.11779/CJGE201604018

Model tests on liquefaction resistance of desaturation measures of electrolysis

More Information
  • Revised Date: March 01, 2015
  • Published Date: April 24, 2016
  • It has been proposed that liquefaction resistance of saturated sandy foundation can be improved through reducing its saturation degree. The electrolysis method is adopted to produce desaturated sand soils. By means of a conductive plastic drainage plate used as the electrodes, the electrolysis tests on water and saturated sand are conducted to determine the electrode spacing, electrolysis voltage and electrode arrangements. The gas bubble distributions of the saturated sandy foundation are analyzed to confirm the feasibility of electrolytic process. The effect of electrolytic procedure is experimentally validated based on the shaking table tests. According to different locations of the electrodes in sandy foundation, three different electrode arrangements, including vertical, horizontal and inclined modes, are compared. The results show that the horizontal one possesses the best liquefaction resistance since the generating excess pore pressure during the vibration is the lowest. Simultaneously, the tests on desaturated sand standing for a period of time after electrolysis are also carried out to investigate the effective time of desaturation effect. The results indicate that the desaturation effect still works under this condition. In engineering practice, the electrolysis of ground can be operated at regular intervals to keep the enhanced liquefaction resistance.
  • [1]
    SHERIF M A, TSUCHIYA C, ISHIBASHI I. Saturation effects on initial soil liquefaction[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(8): 914-917.
    [2]
    CHANEY R C. Saturation effects on the cyclic strength of sands[C]// Earthquake Engineering and Soil Dynamics- Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference. Pasadena, 1978.
    [3]
    YOSHIMI Y, TANAKA K, TOKIMATSU K. Liquefaction resistance of partially saturated sand[J]. Soils and Foundations, 1989, 29(3): 157-162.
    [4]
    YASUDA S, KOBAYASHI T, FUKUSHIMA Y. Effect of degree of saturation on the liquefaction strength of Masa[C]// Proceedings of 34th Japanese National Conference Geotechnical Engineering. Tokyo, 1999: 2071-2072.
    [5]
    HUANG Y, TSUCHIYA H, ISHIHARA K. Estimation of partial saturation effect on liquefaction resistance of sand using P-wave velocity[C]// Proceedings of Japanese Geotechnical Society. Nerada: 1999: 431-434.
    [6]
    ISHIHARA K, TSUCHIYA H, HUANG Y. Recent studies on liquefaction studied on sand-effect of saturation[C]// Proceedings of 4th International Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, 2001: 1-7.
    [7]
    後藤茂, 社本康広. 不飽和砂の液状化抵抗の評価法(その2)[C]// 地盤工学研究発表会発表講演集. 大阪, 2002: 1987-1988. (GOTO S, SHAMOTO Y. Evaluation method on liquefaction resistance of unsaturated sandy soil (Part2)[C]// Lectures on Geotechnical Engineering. Osaka, 2002: 1987-1988. (in Japanese))
    [8]
    GOTO S, SHAMOTO Y. Evaluation method on liquefaction resistance of unsaturated sandy soil (Part2)[C]// Procedding of 37th Japanese National Conference of Geotechnical Engineering. Osaka, 2002: 1987-1988.
    [9]
    OKAMURA M, NOGUCHI K. Liquefaction resistances of unsaturated non-plastic silt[J]. Soils and Foundations, 2009, 49(2): 221-229.
    [10]
    ESELLER-BAYAT E, YEGIAN M K, ALSHAWABKEH A, et al. Liquefaction response of partially saturated sands (I): Experimental results[J]. Journal of Geotechnical and Geoenviromental Engineering, 2012, 139(7): 863-871.
    [11]
    OKAMURA M, ISHIHARA M, TAMURA K. Degree of saturation and liquefaction resistances of sand improved with sand compaction pile[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2006, 132(2): 258-264.
    [12]
    OKAMURA M, TAKEBAYASHI M, NISHIDA K, et al. In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137: 643-652.
    [13]
    HE J, IVANOV V, CHU J. Mitigation of liquefaction of saturated sand using biogas[J]. Géotechnique, 2013, 63(4): 267-275.
    [14]
    HE J, CHU J. Undrained responses of microbially desaturated sand under monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014(12): 1-8.
    [15]
    ESELLER-BAYAT E, YEGIAN M K, ALSHAWABKEH A, et al. Liquefaction response of partially saturated sands (Ⅱ): empirical model[J]. Journal of Geotechnical and Geo- environmental Engineering, 2012, 139(6): 872-879.
    [16]
    YEGIAN M K, ESELLER-BAYAT E, ALSHAWABKEH A, et al. Induced-partial saturation for liquefaction mitigation: experimental investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 372-380.
    [17]
    FOURIE A B, JOHNS D G, JONES C F. Dewatering of mine tailings using electrokinetic geosynthetics[J]. Canadian Geotechnical Journal, 2007, 44: 160-172.
    [18]
    FOURIE A B, JONES C J F P. Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs)[J]. Geotextiles and Geomembranes, 2010, 28: 181-190.
    [19]
    胡俞晨, 王 钊, 庄艳峰. 电动土工合成材料加固软土地基实验研究[J]. 岩土工程学报, 2005, 27(5): 582-586. (HU Yu-chen, WANG Zhao, ZHUANG Yan-feng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Jounal of Geotechnical Engineering, 2005, 27(5): 582-586. (in Chinese))
    [20]
    李 瑛, 龚晓南. 含盐量对软黏土电渗排水影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1254-1250. (LI Ying, GONG Xiao-nan. Experimental study on effect of soil salinity on electro-osmotic dewatering in soft clay[J]. Chinese Jounal of Geotechnical Engineering, 2011, 33(8): 1254-1250. (in Chinese))
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return