Citation: | ZHANG Tao, LIU Song-yu, CAI Guo-jun. Boundary surface plasticity model for lignin-treated silt considering cementation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 670-680. DOI: 10.11779/CJGE201604011 |
[1] |
龚晓南. 地基处理手册[M]. 北京: 中国建筑工业出版社, 2008. (GONG Xiao-nan. Ground improvement manual[M]. Beijing: China Architecture and Building Press, 2008. (in Chinese))
|
[2] |
SHERWOOD P T. The stabilization with cement of weathered and sulphate-bearing clays[J]. Géotechnique, 1957, 7(4): 179-191.
|
[3] |
BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(4): 223-237.
|
[4] |
LO S R, WARDANI S P R. Strength and dilatancy of a silt stabilized by a cement and fly ash mixture[J]. Canadian Geotechnical Journal, 2002, 39(1): 77-89.
|
[5] |
黄 新, 宁建国, 郭 晔, 等. 水泥含量对固化土结构形成的影响研究[J]. 岩土工程学报, 2006, 28(4): 436-441. (HUANG Xin, NING Jian-guo, GUO Ye, et al. Effect of cement content on the structural formation of stabilized soil[J]. Chinese Jounal of Geotechnical Engineering, 2006, 28(4): 436-441. (in Chinese))
|
[6] |
ROLLINGS R S, BURKES M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372.
|
[7] |
SARIOSSEIRI F, MUHUNTHAN B. Effect of cement treatment on geotechnical properties of some Washington state soils[J]. Engineering Geology, 2009, 104(1/2): 119-125.
|
[8] |
蒋挺大. 木质素[M]. 北京: 化学工业出版社, 2008. (JIANG Ting-da. Lignin[M]. Beijing: Chemical Industry Press, 2008. (in Chinese))
|
[9] |
姚 穆, 孙润军, 陈美玉, 等. 植物纤维素、木质素、半纤维素等的开发与利用[J]. 精细化工, 2009, 26(10): 938-942. (YAO Mu, SUN Run-jun, CHEN Mei-yu, et al. Development and utilization of plant cellulouse, lignin and hemicelluloses and so on[J]. Fine Chemicals, 2009, 26(10): 938-942. (in Chinese))
|
[10] |
CHEN B. Polymer-clay nanocomposites: an overview with emphasis on interaction mechanisms[J]. British Ceramic Transactions, 2004, 103(6): 241-249.
|
[11] |
TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record, 2003, 1819: 72-84.
|
[12] |
SANTONI R L, TINGLE J S, NIEVES M. Accelerated strength improvement of silty sand with nontraditional additives[J]. Transportation Research Record, 2005, 1936: 34-42.
|
[13] |
KIM S, GOPALAKRISHNAN K, CEYLAN H. Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct[J]. Journal of Transportation Engineering, 2012, 138(11): 1283-1290.
|
[14] |
刘松玉, 蔡国军. 基于生物能源副产品木质素的土体稳定性加固剂: 中国, 201010271040.1[P]. 2010-08-31. (LIU Song-yu, CAI Guo-jun. Lignin-based bioenergy by-products to stabilize soil: China, 201010271040.1[P]. 2010-08-31. (in Chinese))
|
[15] |
INDRARATNA B, ATHUKORALA R, VINOD J. Estimating the rate of erosion of a silty sand treated with lignosulfonate[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(5): 701-714.
|
[16] |
GOW A J, DAVIDSON D T, SHEELER J B. Relative effects of chlorides, lignosulfonates and molasses on properties of a soil-aggregate mix[J]. Highway Research Board Bulletin, 1961, 282: 66-83.
|
[17] |
KAROL R H. Chemical grounting and soil stabilization[M]. 3rd ed. New York: Marcel Decker Incorporation, 2003.
|
[18] |
VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Ground Improvement, 2010, 163(1): 43-51.
|
[19] |
刘松玉, 张 涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展[J]. 中国公路学报, 2014, 27(8): 1-10. (LIU Song-yu, ZHANG Tao, CAI Guo-jun, et al. Research progress of soil stabilization with lignin from bio-energy by-products[J]. Chinese Journal of Highway and Transport, 2014, 27(8): 1-10. (in Chinese))
|
[20] |
INDRARATNA B, MUTTUVEL T, KHABBAZ H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
|
[21] |
张 涛, 刘松玉, 蔡国军, 等. 工业副产品木质素改良路基粉土的微观机理研究[J]. 岩土力学, 待刊. (ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Research on the stabilization microcosmic mechanism of lignin based by-product treated subgrade silt[J]. Rock and Soil Mechanics, in press. (in Chinese))
|
[22] |
李相崧. 饱和土弹塑性理论的数理基础—纪念黄文熙教授[J]. 岩土工程学报, 2013, 35(1): 1-33. (LI Xiang-song. Physical and mathematical bases of elastoplastic theories on saturated soil-In memory of Professor HUANG Wen-xi[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 1-33. (in Chinese))
|
[23] |
DAFALIAS Y F, HERRMANN L R. A bounding surface soil plasticity model[C]// Proceeding of International Symposium on Soils under Cyclic and Transient Loading. Swansea, 1980.
|
[24] |
RUSSELL A R, KHALILI N. A unified bounding surface plasticity model for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3): 181-212.
|
[25] |
ROUAINIA M. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153-164.
|
[26] |
BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269-278.
|
[27] |
CHEN Q, INDRARATNA B, CARTER J, et al. A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt[J]. Computers and Geotechnics, 2014, 61: 316-327.
|
[28] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
|
[29] |
GAJO A, WOOD M. Severn-trent sand: a kinematic- hardening constitutive model: the q - p formulation[J]. Géotechnique, 1999, 49(5): 595-614.
|
[30] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
|
[31] |
YAN W M, LI X S. A model for natural soil with bonds[J]. Géotechnique, 2010, 61(2): 95-106.
|
[32] |
KHALILI N, HABTE M A, ZARGARBASHI S. A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses[J]. Computers and Geotechnics, 2008, 35(6): 872-889.
|
[33] |
LI T, MEISSNER H. Two-surface plasticity model for cyclic undrained behavior of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 613-626.
|
[34] |
DAFALIAS Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
|
[35] |
DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity. II: application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291.
|
[36] |
ANANDARAJAH A, DAFALIAS Y F. Bounding surface plasticity. III: application to anisotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318.
|
[37] |
孙益振, 邵龙潭. 基于局部与整体变形测量的粉土泊松比试验研究[J]. 岩土工程学报, 2006, 28(8): 1033-1038. (SUN Yi-zhen, SHAO Long-tan. Experimental researches on Poisson’s ratio of silty soil based on local and whole deformation measurements[J]. Chinese Jounal of Geotechnical Engineering, 2006, 28(8): 1033-1038. (in Chinese))
|
[38] |
YU H S. CASM: A unified state parameter model for clay and sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 621-653.
|
[39] |
LIU J, XIAO J. Experimental study on the stability of railroad silt subgrade with increasing train speed[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(6): 833-841.
|