Citation: | HE Jia, CHU Jian, LIU Han-long, GAO Yu-feng, LI Bing. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. DOI: 10.11779/CJGE201604008 |
[1] |
MITCHELL J, SANTAMARINA J. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(10): 1222-1233.
|
[2] |
DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
|
[3] |
IVANOV V, CHU J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ[J]. Reviews in Environmental Science and Biotechnology, 2008, 7(2): 139-153.
|
[4] |
DEJONG J T, MORTENSEN M B, MARTINEZ B C, et al. Biomediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
|
[5] |
CHU J, STABNIKOV V, IVANOV, V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiology Journal, 2012, 29(6): 544-549.
|
[6] |
VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(12): 1721-1728.
|
[7] |
AL QABANY A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 2013, 63(4): 331-339.
|
[8] |
VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175.
|
[9] |
范珊珊. 微生物反硝化土体加固新技术初探[D]. 武汉: 华中科技大学, 2013. (FAN Shan-shan. Preliminary research on a novel soil improvement technique by microbial denitrification[D]. Wuhan: Huazhong University of Science and Technology, 2013. (in Chinese))
|
[10] |
WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094.
|
[11] |
WEAVER T, BURBANK M, LEWIS R, et al. Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, TX, 2011: 3975-3983.
|
[12] |
CHU J, IVANOV V. Iron- and calcium-based biogrouts for soil improvement[C]// Proceedings of Geo-Congress 2014. Atlanta, Georgia, 2014: 1596-1601.
|
[13] |
HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117.
|
[14] |
荣 辉, 钱春香, 李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报, 2013, 41(3): 314-319. (RONG Hui, QIAN Chun-xiang, LI Long-zhi. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 314-319. (in Chinese))
|
[15] |
DHAMI, N K, REDDY M S, MUKHERJEE A. Biomineralization of calcium carbonates and their engineered applications: a review[J]. Frontiers in Microbiology, 2013, 4: 314.
|
[16] |
HE J, CHU J, IVANOV V. Mitigation of liquefaction of saturated sand using biogas[J]. Géotechnique, 2013, 63(4): 267-275.
|
[17] |
REBATA-LANDA V, SANTAMARINA J C. Mechanical effects of biogenic nitrogen gas bubbles in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138(2): 128-137.
|
[18] |
CATNEY S F, LYNCH R J. Experimental investigations of air sparging to control contaminated groundwater[J]. Proceedings of ICE-Geotechnical Engineering, 2001, 149(4): 253-258.
|
[19] |
HE J. Mitigation of liquefaction of sand using microbial methods[D]. Singapore: Nanyang Technological University, 2013.
|
[20] |
BLASZCZYK M, GALKA E, SAKOWICZ E, et al. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon: III methanol[J]. Acta Microbiologica Polonica, 1985, 34(2): 195-205.
|
[21] |
GLASS C, SILVERSTEIN J. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839.
|
[22] |
SALEH-LAKHA S, SHANNON K E, HENDERSON S L, et al. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii[J]. Applied and Environmental Microbiology, 2009, 75(12): 3903-3911.
|
[23] |
SIMEK M, JISOVA L, HOPKINS D W. What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology & Biochemistry, 2002, 34(9): 1227-1234.
|
[24] |
BLASZCZYK M. Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans[J]. Applied and Environmental Microbiology, 1993, 59(11): 3951-3953.
|
[25] |
STANFORD G, DZIENIA S, VANDERPOL R A. Effect of temperature on denitrification rate in soils[J]. Soil Science Society of America Journal, 1975, 39(5): 867-870.
|
[26] |
BAVEYE P, VANDEVIVERE P, HOYLE B L, et al. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(2): 123-191.
|
[27] |
THULLNER M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems[J]. Ecological Engineering, 2010, 36(2): 176-196.
|
[28] |
BOUWER H. Artificial recharge of groundwater: hydrogeology and engineering[J]. Journal of Hydrology, 2002, 10(1): 121-142.
|
[29] |
LI B. Geotechnical properties of biocement treated soils[D]. Singapore: Nanyang Technological University, 2014.
|
[30] |
MONTAYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312.
|
[31] |
程晓辉, 麻 强, 杨 钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. (CHENG Xiao-hui, MA Qiang, YANG Zhuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese))
|
[32] |
STABNIKOV V, CHU J, IVANOV V, et al. Halotolerant, alkalophilic urease-producing bacteria from different climate zones and their application for biocementation of sand[J]. World Journal of Microbiology and Biotechnology, 2013, 29(8): 1453-1460.
|
[33] |
VAN PAASSEN L A, HARKES M P, VAN ZWIETEN G A, et al. Scale up of biogrout: a biological ground reinforcement method[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering. Egypt, 2009: 2328-2333.
|
[34] |
WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
|
[35] |
MARTINEZ B C, DEJONG J T, GINN T R, et al. Experimental optimization of microbial induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(4): 587-598.
|
[36] |
AL QABANY A, SOGA K, SANTAMARINA J C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138(8): 992-1001.
|
[37] |
CHENG L, CORD-RUWISCH R, AND SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2012, 50(1): 1-10.
|
[38] |
SOON N, LEE L, KHUN T, et al. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2014, 140(5): 04014006.
|
[39] |
VAN PAASSEN L A. Bio-mediated ground improvement: from laboratory experiment to pilot applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, TX, USA: ASCE Pressing, 2011: 4099-4108.
|
[40] |
BLAUW M, LAMBERT J W M, LATIL M N. Biosealing: a method for in situ sealing of leakages[C]// Proceedings of the International Symposium on Ground Improvement Technologies and Case Histories. Singapore, 2009: 125-130.
|
[41] |
CHU J, IVANOV V, HE J, et al. Microbial geotechnical engineering for disaster mitigation and coastal management[C]// WCCE-ECCE-TCCE Joint Conference: Earthquake & Tsunami. Istanbul Turkey, 2009.
|
[42] |
LAMBERT J W M, NOVAKOWSKI K, BLAUW M, et al. Pamper bacteria, they will help us: application of biochemical mechanisms in geo-environmental engineering[C]// Proceedings of GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida, 2010: 618-627.
|
[43] |
PHILLIPS A J, LAUCHNOR E, ELDRING J, et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation[J]. Environmental Science & Technology, 2013, 47(1): 142-149.
|
[44] |
CUTHBERT M O, MCMILLAN L A, HANDLEY-SIDHU S, et al. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation[J]. Environmental Science & Technology, 2013, 47(23): 13637-13643.
|
[45] |
CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875.
|
[46] |
SEKI K, MIYAZAKI T, NAKANO M. Effects of microorganisms on hydraulic conductivity decrease in infiltration[J]. European Journal of Soil Science, 1998, 49(2): 231-236.
|
[47] |
JAMES G A, WARWOOD B K, HIEBERT R, et al. Microbial barriers to the spread of pollution[M]// VALDES J J: Bioremediation. Amsterdam: Kluwer Academic, 2000: 1-13.
|
[48] |
CHU J, IVANOV V, HE J, et al. Use of biogeotechnologies for disaster mitigation[M]// LAI S, ed: Geotechnics for Catastrophic Flooding Events. London: CRC Press, 2014: 49-56.
|
[49] |
VAN MEURS G, VAN DER ZON W, LAMBERT J, et al. The challenge to adapt soil properties[C]// Proceedings of 5th ICEG-Environmental Geotechnics: Opportunities, Challenges and Responsibilities for Environmental Geotechnics. 2006: 1192-1199.
|
[50] |
YANG J, SAVIDIS S, ROEMER M. Evaluating liquefaction strength of partially saturated sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(9): 975-979.
|
[51] |
TSUKAMOTO Y, ISHIHARA K, NAKAZAWA H, et al. Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities[J]. Soils and Foundations, 2002, 42(6): 93-104.
|
[52] |
OKAMURA M, SOGA Y. Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand[J]. Soils and Foundations, 2006, 46(5): 695-700.
|
[53] |
HE J, CHU J. Undrained responses of microbially desaturated sand under monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2014, 140(5): 04014003.
|
[54] |
HE J, CHU J, LIU H. Undrained shear strength of desaturated loose sand under monotonic shearing[J]. Soils and Foundations, 2014, 54(4): 910-916.
|
[55] |
OKAMURA M, TAKEBAYASHI M, NISHIDA K, et al. In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 643-652.
|
[56] |
YEGIAN M, ESELLER-BAYAT E, ALSHAWABKEH A, et al. Induced-partial saturation for liquefaction mitigation: Experimental investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4): 372-380.
|
[57] |
ESELLER-BAYAT E, YEGIAN M, ALSHAWABKEH A, et al. Liquefaction response of partially saturated sands. I:Eperimental results[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(6): 863-871.
|
[58] |
MARYAM N. Biocementation of sand in geotechnical engineering[D]. Singapore: Nanyang technological University, 2014.
|
[59] |
BANG S, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geo-Engineering, 2011, 3(2): 27-37.
|
[60] |
JIANG N, SOGA K, DAWOUD O. Experimental study of the mitigation of soil internal erosion by microbially induced calcite precipitation[C]// Proceedings of Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability. Atlanta, 2014: 1586-1595.
|
[61] |
LI M, CHENG X, GUO H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J]. International Biodeterioration & Biodegradation, 2013, 76: 81-85.
|
[62] |
陆兆文, 钱春香, 许燕波. 微生物菌粉与菌液矿化固结Zn 2+ 的研究与对比[J]. 环境科学与技术, 2012, 35(12J): 58-61. (LU Zhao-wen, QIAN Chun-xiang, XU Yan-bo. Study and comparison of mineralized consolidation Zn 2+ between bacteria and powder[J]. Environmental Science and Technology, 2012, 35(12J): 58-61. (in Chinese))
|
[63] |
钱春香, 许燕波, 胡黎明, 等. 一种微生物固结污染体系中Cu 2+ 的研究[J]. 环境科学与技术, 2011, 34(12H): 33-36. (QIAN Chun-xiang, XU Yan-bo, HU Li-ming, et al. Study on Cu 2+ in contaminated system mineralized by bacteria[J]. Environmental Science &Technology, 2011, 34(12H): 33-36. (in Chinese))
|
[64] |
李 萌, 郭红仙, 程晓辉. 土壤中产脲酶微生物分离及对重金属的固化[J]. 湖北农业科学, 2013, 52(14): 3280-3282. (LI Meng, GUO Hong-xian, CHENG Xiao-hui. Isolation of urease producing bacteria from soil and its mineralization on heavy metal[J]. Hubei Agricultural Sciences, 2013, 52(14): 3280-3282. (in Chinese))
|
[65] |
王瑞兴, 钱春香, 吴 淼, 等. 微生物矿化固结土壤中重金属研究[J]. 功能材料, 2007, 38(9): 1523-1526. (WANG Rui-xing, QIAN Chun-xiang, WU Miao, et al. Study on heavy metal removal in soil mineralized by bacteria[J]. Functional Materials, 2007, 38(9): 1523-1526. (in Chinese))
|
[66] |
许燕波, 钱春香, 陆兆文. 微生物矿化修复铅离子污染的研究[J]. 化工时刊, 2012, 26(6): 14-17. (XU Yan-bo, QIAN Chun-xiang, LU Zhao-wen. Study on Pb 2+ mineralized by bacteria for remediation[J]. Chemical Industry Times, 2012, 26(6): 14-17. (in Chinese))
|
[67] |
许燕波, 钱春香, 陆兆文. 微生物矿化修复重金属污染土壤[J]. 环境工程学报, 2013, 7(7): 2763-2768. (XU Yan-bo, QIAN Chun-xiang, LU Zhao-wen. Remediation of heavy metal contaminated soils by bacteria biomineralization[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2763-2768. (in Chinese))
|
[68] |
FUJITA Y, TAYLOR J L, WENDT L M, et al. Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment[J]. Environmental Science & Technology, 2010, 44(19): 7652-7658.
|
[69] |
MANNING D A C. Biological enhancement of soil carbonate precipitation: passive removal of atmospheric CO 2 [J]. Mineralogical Magazine, 2008, 72(2): 639-649.
|
[70] |
赵 茜. 微生物诱导碳酸钙沉淀(MICP)固化土壤试验研究[D]. 北京: 中国地质大学(北京), 2014. (ZHAO Qian. Experimental study on soil improvement using microbial induced calcite precipitation[D]. Beijing: China University of Geosciences, 2014. (in Chinese))
|