Citation: | KE Wen-hui, CHEN Jian, SHENG Qian. One-dimensional elasto-viscoplastic model for structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 494-503. DOI: 10.11779/CJGE201603013 |
[1] |
LEROUEIL S, KABBAJ M, TAVENAS F, et al. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1985, 35(2): 159-180.
|
[2] |
LEROUEIL S, KABBAJ M, TAVENAS F. Study of the validity of a model in in situ conditions[J]. Soils and Foundations, 1988, 28(3): 13-25.
|
[3] |
BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118.
|
[4] |
MESRI G, GODLEWSKI P M. Time and stress- compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.
|
[5] |
YIN J, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.
|
[6] |
YIN J, GRAHAM J. Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays[J]. Canadian Geotechnical Journal, 1994, 31(1): 42-52.
|
[7] |
YIN Z, WANG J. A one-dimensional strain-rate based model for soft structured clays[J]. Science China Technological Sciences, 2012, 55(1): 90-100.
|
[8] |
王立忠, 但汉波. K 0 固结软黏土的弹黏塑性本构模型[J]. 岩土工程学报, 2007, 29(9): 1344-1354. (WANG Li-zhong, DAN Han-bo. Elastic viscoplastic constitutive model for K 0 -consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354. (in Chinese))
|
[9] |
NASH D, BROWN M. A comparison of four elastic visco-plastic models for soft clay[M]. Constitutive Modeling of Geomaterials, 2013: 121-124.
|
[10] |
柯文汇, 陈 建, 盛 谦, 等. 一个描述软黏土时效特性的一维弹黏塑性模型[J]. 岩土力学, 待刊. (KE Wen-hui, CHEN Jian, SHENG Qian, et al. A one-dimensional elasto-viscoplastic model for describing time-dependent behavior of soft clays[J]. Rock and Soil Mechanics, in press. (in Chinese))
|
[11] |
BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269-278.
|
[12] |
LIU M D, CARTER J P. Modelling the destructuring of soils during virgin compression[J]. Géotechnique, 2000, 50(4): 479-483.
|
[13] |
蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134-1139. (JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive relation considered the soils structure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134-1139. (in Chinese))
|
[14] |
尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. (YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1357-1369. (in Chinese))
|
[15] |
KARIM M R, OKA F, KRABBENHOFT K, et al. Simulation of long‐term consolidation behavior of soft sensitive clay using an elasto-viscoplastic constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2801-2824.
|
[16] |
HINCHBERGER S D, QU G. Viscoplastic constitutive approach for rate-sensitive structured clays[J]. Canadian Geotechnical Journal, 2009, 46(6): 609-626.
|
[17] |
曾玲玲, 刘松玉, 洪振舜. 考虑土结构性影响的改进EVP压缩模型[J]. 东南大学学报(自然科学版), 2012, 42(2): 346-351. (ZENG Ling-ling, LIU Song-yu, HONG Zhen-shun. Modified EVP model considering effect of soil structure[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(2): 346-351. (in Chinese))
|
[18] |
LOW H, PHOON K, TAN T, et al. Effect of soil microstructure on the compressibility of natural Singapore marine clay[J]. Canadian Geotechnical Journal, 2008, 45(2): 161-176.
|
[19] |
JUNG Y, FINNO R J, CHO W. Stress-strain responses of reconstituted and natural compressible Chicago glacial clay[J]. Engineering Geology, 2012, 129(1): 9-19.
|
[20] |
JIA R. Consolidation behavior of Ariake clay under constant rate of strain[D]. Saga: Saga University, 2010.
|
[21] |
SMITH P R, JARDINE R J, HIGHT D W. The yielding of Bothkennar clay[J]. Géotechnique. 1992, 42(2): 257-274.
|
[22] |
ISLAM M K, CARTER J P, SIDDIQUEE M, et al. A method for derivation of compression equation and value of degradation exponent for structured soils[J]. Geotechnical and Geological Engineering, 2013, 31(5): 1587-1601.
|
[23] |
PERRET D, LOCAT J, LEROUEIL S. Strength development with burial in fine-grained sediments from the Saguenay Fjord, Quebec[J]. Canadian Geotechnical Journal, 1995, 32(2): 247-262.
|
[24] |
TANAKA H, LOCAT J, SHIBUYA S, et al. Characterization of Singapore, Bangkok, and Ariake clays[J]. Canadian Geotechnical Journal, 2001, 38(2): 378-400.
|
[25] |
曾玲玲, 洪振舜, 刘松玉, 等. 天然沉积结构性土的次固结变形预测方法[J]. 岩土力学, 2011, 32(10): 3136-3142. (ZENG Ling-ling, HONG Zhen-shun, LIU Song-yu,et al. A method for predicting deformation caused by secondary consolidation for naturally sedimentary structural clays[J]. Rock and Soil Mechanics, 2011, 32(10): 3136-3142. (in Chinese))
|
[26] |
DEN H E J. The formulation of virgin compression of soils[J]. Géotechnique, 1992, 42(3): 465-483.
|
[27] |
柯文汇, 陈 建, 盛 谦,等. 结构性软黏土一维压缩变形特性的数学描述[J]. 长江科学院院报, 待刊. (KE Wen-hui, CHEN Jian, SHENG Qian, et al. Description of one-dimensional compression behaviour for structured soft clays[J]. Journal of Yangtze River Scientific Research Institut, in press. (in Chinese))
|
[28] |
BERRY P L, POSKITT T J. The consolidation of peat[J]. Géotechnique, 1972, 22(1): 27-52.
|
[29] |
CHAI J, MIURA N, ZHU H, YUDHBIR. Compression and consolidation characteristics of structured natural clay[J]. Canadian Geotechnical Journal, 2004, 41(6): 1250-1258.
|
[30] |
TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
|
[1] | ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865 |
[2] | TAN Yun-zhi, YU Bo, HU Xin-jiang, LIU Xiao-ling. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 129-133. |
[3] | MEI Ling, JIANG Peng-ming, LI Peng, ZHOU Ai-zhao. Soil-water characteristic curve tests on unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 124-128. |
[4] | LI Jian, ZHAO Cheng-gang, HUANG Qi-di. Constitutive modeling with double-scale pore structure for coupling of capillary hysteresis and stress-strain behaviours in unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2127-2133. |
[5] | LIU Xiao-dong, SHI Jian-yong. Unsaturated conductivity of MSW based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 855-862. |
[6] | YAO Yang-ping, NIU Lei, CUI Wen-jie, WAN Zheng. UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833. |
[7] | LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405. |
[8] | BAO Chenggang, ZHAN Liangtong. Relationship between unsaturated soil behavior and engineering problems[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 129-136. |
[9] | LUAN Maotian, LI Shunqun, YANG Qing. Theoretical soil—water characteristic curve for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 611-615. |
[10] | XING Yichuan, XIE Dingyi, LI Zheng. Stress transmission mechanism and effective stress principle of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 53-57. |