• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Qing-song, ZHANG Lian-zhen, LIU Ren-tai, YU Wen-sheng, ZHENG Zhuo, WANG Hong-bo, ZHU Guang-xuan. Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 323-330. DOI: 10.11779/CJGE201602016
Citation: ZHANG Qing-song, ZHANG Lian-zhen, LIU Ren-tai, YU Wen-sheng, ZHENG Zhuo, WANG Hong-bo, ZHU Guang-xuan. Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 323-330. DOI: 10.11779/CJGE201602016

Split grouting theory based on slurry-soil coupling effects

More Information
  • Received Date: January 28, 2015
  • Published Date: February 24, 2016
  • The slurry-soil coupling effects have a great influence on the process of split grouting. The thickness of grouting vein has an attenuation from the region near grouting hole to the diffusion front. The process of split grouting is simplified into horizontal radiation circle. An equation for slurry motion in split channel is derived using the Newtonian fluid constitutive model. By introducing the force model of semi-infinite space, the governing equation for the thickness of grouting vein is derived. Finally, the spatial distribution equation for the grouting pressure and thickness of grouting vein is obtained. The spatial distribution response of the thickness of grouting vein and the grouting pressure is analyzed. The influence of slurry viscosity and elastic modulus of soil on process of split grouting is analyzed. The results show that the pressure attenuation trend in the radial direction is nonlinear, and that the change rate near the grouting hole and diffusion front is higher than that in other regions. The attenuation trend of thickness of grouting vein is similar to that of pressure. When the slurry viscosity and elastic modulus of soil are smaller, the grouting diffusion radius is larger. By comparing the theoretical model with the engineering example, the theoretical thickness of grouting vein is 1.3 times larger than that of the measured one.
  • [1]
    李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014, 35(3): 745-751. (LI Shu-cai, ZHANG Wei-jie, ZHANG Qing-song, et al. Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3): 745-751. (in Chinese))
    [2]
    邝键政, 昝月稳, 王 杰, 等. 岩土工程注浆理论与工程实例[M]. 北京: 科学出版社, 2001. (KUANG Jian-zheng, ZAN Yue-wen, WANG Jie, et al. Theory and project example of grout in geotechnical engineering[M]. Beijing: Science Press, 2001. (in Chinese))
    [3]
    张庆松, 韩伟伟, 李术才, 等. 灰岩角砾岩破碎带涌水综合注浆治理[J]. 岩石力学与工程学报, 2012, 31(12): 2412-2419. (ZHANG Qing-song, HAN Wei-wei, LI Shu-cai, et al. Comprehensive grouting treatment for water gushing analysis in limestone breccias fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2412-2419. (in Chinese))
    [4]
    白 云, 侯学渊. 软土地基劈裂注浆加固的机理和应用[J]. 岩土工程学报, 1991, 13(2): 89-93. (BAI Yun, HOU Xue-yuan. Mechanism and application of grouting reinforcement of soft foundation[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(2): 89-93. (in Chinese))
    [5]
    李 鹏, 张庆松, 张 霄, 等. 基于模型试验的劈裂注浆机制分析[J]. 岩土力学, 2014, 35(11): 3221-3230. (LI Peng, ZHANG Qing-song, ZHANG Xiao, et al. Analysis of fracture grouting mechanism based on model test[J]. Rock and Soil Mechanics, 2014, 35(11): 3221-3230. (in Chinese))
    [6]
    CHEN Tie-lin, ZHANG Liang-yi, ZHANG Ding-li. An FEM/VOF hybrid formulation for fracture grouting modelling[J]. Computers and Geotechnics, 2014(58): 14-27.
    [7]
    WANG S Y, CHAN D H, LAM K C, et al. A new laboratory apparatus for studying dynamic compaction grouting into granular soils[J]. Soils and Foundations, 2013, 53(3): 462-268.
    [8]
    邹金锋, 李 亮, 杨小礼. 劈裂注浆扩散半径及压力衰减分析[J]. 水利学报, 2006, 37(3): 314-319. (ZOU Jin-feng, LI Liang, YANG Xiao-li, et al. Penetration radius and pressure attenuation law in fracturing grouting[J]. Journal of Hydraulic Engineering, 2006, 37(3): 314-319. (in Chinese)).
    [9]
    孙 锋, 陈铁林, 张顶立, 等. 基于宾汉体浆液的海底隧道劈裂注浆机制研究[J]. 北京交通大学学报(自然科学版), 2009, 33(4): 1-6. (SUN Feng, CHEN Tie-lin, ZHANG Ding-li, et al. Study on fracture grouting mechanism in subsea tunnel based on Bingham fluids[J]. Journal of Beijing Jiaotong University (Science and Technology), 2009, 33(4): 1-6. (in Chinese)).
    [10]
    张忠苗, 邹 健. 桩底劈裂注浆扩散半径和注浆压力研究[J]. 岩土工程学报, 2008, 30(2): 181-184. (ZHANG Zhong-miao, ZOU Jian. Penetration radius and grouting pressure in fracture grouting[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 181-184. (in Chinese))
    [11]
    孙 锋, 张顶立, 陈铁林. 基于流体时变性的隧道劈裂注浆机制研究[J]. 岩土工程学报, 2011, 33(1): 88-93. (SUN Feng, ZHANG Ding-li, CHEN Tie-lin. Fracture grouting mechanism in tunnels based on time-dependent behaviors of grout[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 88-93. (in Chinese))
    [12]
    徐芝纶. 弹性力学[M]. 北京: 人民教育出版社, 1979. (XU Zhi-lun. Elastic mechanics[M]. Beijing: People’s Education Press, 1979. (in Chinese))
    [13]
    褚武扬. 断裂力学基础[M]. 北京: 科学出版社, 1989. (CHU Wu-yang. Foundation of fracture mechanics[M]. Beijing: Science Press, 1989. (in Chinese))
    [14]
    张伟杰. 隧道工程富水断层破碎带注浆加固机理及应用研究[D]. 济南: 山东大学, 2014. (ZHANG Wei-jie. Mechanism of grouting reinforcement of water-rich fault fractured zone and its application in tunnel engineering[D]. Jinan: Shan Dong University, 2014. (in Chinese))
    [15]
    邹金锋, 李 亮, 杨小礼, 等. 土体劈裂灌浆力学机理分析[J]. 岩土力学, 2006, 27(4): 625-628. (ZOU Jin-feng, LI Liang, YANG Xiao-li, et al. Mechanism analysis of fracture grouting in soil[J]. Rock and Soil Mechanics, 2006, 27(4): 625-628. (in Chinese))
    [16]
    邹金锋, 童无欺, 罗 恒, 等. 基于Hoek-Brown强度准则的裂隙岩体劈裂注浆力学机理[J]. 中南大学学报(自然科学版), 2013(7): 2889-2896. (ZOU Jin-feng, TONG Wu-qi, LUO Heng, et al. Mechanism of fracture grouting for fractured rock based on Hoek-Brown failure criterion[J]. Journal of Central South University (Science and Technology), 2013(7): 2889-2896. (in Chinese))
    [17]
    张忠苗, 邹 健, 贺静漪, 等. 黏土中压密注浆及劈裂注浆室内模拟试验分析[J]. 岩土工程学报, 2009, 31(12): 1818-1824. (ZHANG Zhong-miao, ZOU Jian, JIA Jing-yi, et al. Laboratory tests on compaction grouting and fracture grouting of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1818-1824. (in Chinese))
  • Related Articles

    [1]Understanding the governing equations of one-dimensional finite strain consolidation of saturated soils[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240077
    [2]YAO Chi, SHAO Yu-long, YANG Jian-hua, HE Chen, HUANG Fan, ZHOU Chuang-bing. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. DOI: 10.11779/CJGE202006008
    [3]BAI Qing-bo, LI Xu, TIAN Ya-hu, FANG Jian-hong. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 131-136. DOI: 10.11779/CJGE2015S2026
    [4]CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025-1030. DOI: 10.11779/CJGE201506008
    [5]ZHANG Xing-sheng, LU Yao-ru, WANG Jian-xiu, WONG Henry. Land subsidence caused by pits seepage erosion of deep foundation with suspended diaphragm walls in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 284-290. DOI: 10.11779/CJGE2014S2050
    [6]SHAO Long-tan. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837.
    [7]A solution of Gibson’s governing equation of one-dimensional consolidation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [8]Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4).
    [9]TU Xinbin, DAI Fuchu. Analytical solution for one-dimensional heat transfer equation of soil and evaluation for thermal diffusivity[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 652-657.
    [10]Liao Hongjian, Yu Maohong, Masaru Akaishi, Zhu Bohong. Elasto viscoplastic constitutive equation of cohesive soils and its application[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 41-44.
  • Cited by

    Periodical cited type(5)

    1. 张晓,周建,蒋熠诚,HORRIS K N. 接头渗漏和土体渗透各向异性对盾构隧道渗流影响的数值模拟. 中南大学学报(自然科学版). 2023(03): 1012-1022 .
    2. 薛万来,李法虎,刘晔,李彬瑜,黄炳彬. 添加膨润土对土壤渗透性及微观结构影响的研究. 灌溉排水学报. 2022(09): 85-92 .
    3. 崔子晏,张凌凯. 北疆某工程膨胀土的力学特性及微观机制试验研究. 水利水运工程学报. 2022(06): 103-112 .
    4. 胡浩,周建,张晓,蒋熠诚. 软土渗透各向异性特性及其微观机理研究. 低温建筑技术. 2021(06): 101-105 .
    5. 赵茜,苏立君,刘华,杨金熹. 冻融循环对黄土渗透系数各向异性影响的试验研究. 冰川冻土. 2020(03): 843-853 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return