Citation: | ZHANG Tao, LIU Song-yu, CAI Guo-jun, LI Jun-hai, JIE Dao-bo. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876-1793. DOI: 10.11779/CJGE201510016 |
[1] |
ZHU Z D, LIU S Y. Utilization of a new soil stabilizer for silt subgrade[J]. Engineering Geology, 2008, 97(3): 192-198.
|
[2] |
张 涛, 蔡国军, 刘松玉. 南京地区典型土体热学特性与预测模型[J]. 东南大学学报 (自然科学版), 2014, 44(3): 655-661. (ZHANG Tao, CAI Guo-jun, LIU Song-yu. Thermal properties and prediction model of typical soils in Nanjing area[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 655-661. (in Chinese))
|
[3] |
BELL F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996, 42(4): 223-237.
|
[4] |
BOARDMAN D I, GLENDINNING S, ROGERS C D F. Development of stabilisation and solidification in lime-clay mixes[J]. Géotechnique, 2001, 51(6): 533-543.
|
[5] |
PUPPALA A J, KADAM R, MADHYANNAPU R S, et al. Small-strain shear moduli of chemically stabilized sulfate-bearing cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 322-336.
|
[6] |
INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844.
|
[7] |
CHEN R, DRNEVICH V P, DAITA R K. Short-term electrical conductivity and strength development of lime kiln dust modified soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 590-594.
|
[8] |
ROLLINGS R S, BURKES M P. Sulfate attack on cement-stabilized sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 364-372.
|
[9] |
刘松玉, 张 涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展[J]. 中国公路学报, 2014, 27(8): 1-10. (LIU Song-yu, ZHANG Tao, CAI Guo-jun, et al. Research progress of soil stabilization with lignin from bio-energy by-products[J]. Chinese Journal of Highway and Transport, 2014, 27(8): 1-10. (in Chinese))
|
[10] |
SHULGA G, REKNER F, VARSLAVAN J. SW-soil and water: lignin-based interpolymer complexes as a novel adhesive for protection against erosion of sandy soil[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 309-316.
|
[11] |
VINOD J S, INDRARATNA B, MAHAMUD M A A. Stabilisation of an erodible soil using a chemical admixture[J]. Ground Improvement, 2010, 163(1): 43-51.
|
[12] |
TINGLE J S, SANTONI R L. Stabilization of clay soils with nontraditional additives[J]. Transportation Research Record, 2003(1819): 72-84.
|
[13] |
SANTONI R L, TINGLE J S, NIEVES M. Accelerated strength improvement of silty sand with nontraditional additives[J]. Transportation Research Record, 2005(1936): 34-42.
|
[14] |
CEYLAN H, GOPALAKRISHNAN K, KIM S. Soil stabilization with bioenergy coproduct[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2186): 130-137.
|
[15] |
PUPPALA A J, HANCHANLOET S. Evaluation of a new chemical (SA-44/LS-40) treatment method on strength and resilient properties of a cohesive soil[C]// Preprint 78th Annual Meeting of the Transportation Research Board. Washington D C, 1999.
|
[16] |
INDRARATNA B, MUTTUVEL T, KHABBAZ H. Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J]. Canadian Geotechnical Journal, 2009, 46(1): 57-68.
|
[17] |
HOTZ R D, GE L. Investigation of the thermal conductivity of compacted silts and its correlation to the elastic modulus[J]. Journal of Materials in Civil Engineering, 2009, 22(4): 408-412.
|
[18] |
EKWUE E I, STONE R J, BHAGWAT D. Thermal conductivity of some compacted Trinidadian soils as affected by peat content[J]. Biosystems Engineering, 2006, 94(3): 461-469.
|
[19] |
CAI G J, ZHANG T, PUPPALA A J, LIU S Y. Thermal characterization and prediction model of typical soils in Nanjing area of China[J]. Engineering Geology, 2015, 191: 23-30.
|
[20] |
GANGADHARA R M, SINGH D N. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773.
|
[21] |
INDRARATNA B, ATHUKORALA R, VINOD J. Estimating the rate of erosion of a silty sand treated with lignosulfonate[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 139(5): 701-714.
|
[22] |
SAWANGSURIYA A, EDIL T B, BOSSCHER P J. Modulus-suction-moisture relationship for compacted soils[J]. Canadian Geotechnical Journal, 2008, 45(7): 973-983.
|
[23] |
WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921: 115-116.
|
[24] |
ZHANG L M, LI X. Microporosity structure of coarse granular soils[J]. Journal of Geotechnical and Geo- environmental Engineering, 2010, 136(10): 1425-1436.
|
[25] |
丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3597. (DING Jian-wen, HONG Zhen-shun, LIU Song-yu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3597. (in Chinese))
|
[26] |
刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. (LIU Zhao-peng, DU Yan-jun, LIU Song-yu, et al. Stength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. (in Chinese))
|
[27] |
DELAGE P. A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays[J]. Géotechnique, 2010, 60(5): 353-368.
|
[28] |
LEE J K, SHANG J Q. Evolution of thermal and mechanical properties of mine tailings and fly ash mixtures during curing period[J]. Canadian Geotechnical Journal, 2014, 51(5): 570-582.
|