• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023
Citation: XIE Yi-fan, WU Ji-chun, XUE Yu-qun, XIE Chun-hong. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. DOI: 10.11779/CJGE201509023

Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers

More Information
  • Received Date: December 20, 2014
  • Published Date: September 17, 2015
  • A cubic-spline multiscale finite element method (MSFEM-C) is proposed for the simulation of nodal Darcy velocities in the heterogeneous media. The main goal of this method is to efficiently solve the hydraulic heads and nodal Darcy velocities. It is realized by the combination of cubic-spline technique and the multiscale finite element method (MSFEM). MSFEM-C applies cubic-spline technique to multiscale base functions so as to make their derivatives continuous. Therefore, the continuous derivatives of hydraulic head can be obtained, which ensures the continuity of the velocity field. The MSFEM-C is based on MSFEM, so that the computation of nodal Darcy velocities is decomposed from element to element. Therefore, MSFEM-C can save much computational cost, which makes it more efficinent in solving high computational problems, such as large-scale, long-term or nonlinear problems. The numerical experiments indicate that the MSFEM-C achieves accurate nodal Darcy velocities and hydraulic heads with much less computational cost.
  • [1]
    ZHOU Q, BENSABAT J, BEAR J. Accurate calculation of specific discharge in heterogeneous porous media[J]. Water Resources Research, 2001, 37(12): 3057-3069。
    [2]
    王铁行, 罗 扬, 张 辉. 黄土节理二维稳态流流量方程[J]. 岩土工程学报, 2013, 35(6): 1115-1120. (WANG Tie-hang, LUO Yang, ZHANG Hui. Two-dimensional steady flow rate equation for loess joints[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1115-1120. (in Chinese))
    [3]
    SRINIVAS C, RAMASWAMY B, WHEELER M F. Mixed finite element methods for flow through unsaturated porous media[M]// RUSSELL T F, EWING R E, BREBBIA C A, et al, ed. Computational Methods in Water Resources, IX, vol. 1: Numerical Methods in Water Resources. Southampton: Elsevier Applied Science, 1992: 239-246.
    [4]
    D'ANGELO C, SCOTTI A. A mixed finite element method for Darcy flow in fractured porous media with non-matching grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 465-489.
    [5]
    ERVIN V J. Approximation of axisymmetric Darcy flow using mixed finite element methods[J]. SIAM Journal on Numerical Analysis, 2013, 51(3): 1421-1442.
    [6]
    谢春红, 赵文良, 张天岭, 等. 地下水不稳定渗流达西速度计算新方法[J]. 岩土工程学报, 1996, 18(1): 68-74. (XIE Chun-hong, ZHAO Wen-liang, ZHANG Tian-lin, et al. A new method for solving unsteady groundwater flow[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 68-74. (in Chinese))
    [7]
    YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534.
    [8]
    BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705-1717.
    [9]
    ZHANG Z, XUE Y, WU J. A cubic‐spline technique to calculate Nodal Darcian velocities in aquifers[J]. Water Resources Research, 1994, 30(4): 975-981.
    [10]
    薛禹群, 叶淑君, 谢春红, 等. 多尺度有限元法在地下水模拟中的应用[J]. 水利学报, 2004, 7: 7-13. (XUE Yu-qun, YE Shu-jun, XIE Chun-hong, et al. Application of multi-scale finite element method to simulation of groundwater flow[J]. Journal of Hydraulic Engineering, 2004, 7: 7-13. (in Chinese))
    [11]
    HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169-189.
    [12]
    贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法——Ⅰ数值格式[J]. 水利学报, 2009, 40(1): 38-45. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅰ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
    [13]
    贺新光, 任 理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅱ数值格式[J]. 水利学报, 2009, 40(2): 138-144. (HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅱ: numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38-45. (in Chinese))
    [14]
    叶淑君, 吴吉春, 薛禹群. 多尺度有限单元法求解非均质多孔介质中的三维地下水流问题[J]. 地球科学进展, 2004, 19(3): 437-442. (YE Shu-jun, WU Ji-chun, XUE Yu-qun. Application of multiscale finite element method to three dimensional groundwater flow problems in heterogeneous porous media[J]. Advance in Earth Sciences, 2004, 19(3): 437-442. (in Chinese))
    [15]
    于 军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质, 2007, 34(5): 11-16. (YU Jun, WU Ji-chun, YE Shu-jun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 2007, 34(5): 11-16. (in Chinese))
    [16]
    GREVILLE T N E. Theory and applications of spline functions[M]. New York: Academic Press, 1969.
    [17]
    KARIM S A A, ROSLI M A M, MUSTAFA M I M. Cubic spline interpolation for petroleum engineering data[J]. Applied Mathematical Sciences, 2014, 8(102): 5083-5098.
    [18]
    王省富. 样条函数及其应用[M]. 西安: 西北工业大学出版社, 1989. (WANG Sheng-fu. Spline functions and its applications[M]. Xi'an: Press of Industrial University of Northwest China, 1989. (in Chinese))
    [19]
    薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175-178. (XUE Yu-qun, XIE Chun-hong. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007: 175-178. (in Chinese))
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (331) PDF downloads (260) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return