• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yuan-hai, JIA Ran-xu, YANG Su. Optimized method for DSCM based on progressive displacement characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1490-1496. DOI: 10.11779/CJGE201508019
Citation: LI Yuan-hai, JIA Ran-xu, YANG Su. Optimized method for DSCM based on progressive displacement characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1490-1496. DOI: 10.11779/CJGE201508019

Optimized method for DSCM based on progressive displacement characteristics of geotechnical materials

More Information
  • Received Date: September 12, 2014
  • Published Date: August 24, 2015
  • The image analysis efficiency is one of the most important issues in digital speckle correlation method (DSCM) applied in geotechnical experiments. On the other hand, the displacement magnitude and direction of some types of geotechnical materials are characterized by slow changes. In order to improve the image efficiency of DSCM, an optimized method named “local direction search method(LDSM)” based on the progressive displacement characteristics of geotechnical materials is proposed, and its application prerequisites and key algorithm equations are also introduced. Functions of LDSM is implemented by programing in self-developed software PhotoInfor. The most common angle parameter scope from 30 to 45 degrees is given for the image search scope used in LDSM. The research shows that the image analysis results of LDSM are identical with those of the normal search method in DSCM. While the angle parameter in LDSM equals to 45 degrees, the analysis efficiency of LDSM is 1.3~1.6 times more than that of the normal search method. In other words, the analysis efficiency is improved by at least one time and is stable with the increasing analysis points on images. LDSM for DSCM has important practical values in geotechnical experiments.
  • [1]
    李元海. 数字照相量测技术及其在岩土工程实验中的应用[M]. 徐州: 中国矿业大学出版社, 2009. (LI Yuan-hai. Digital photogrammetry-based deformation measurement technique and its application in geotechnical engineering test[M]. Xuzhou: China University of Mining and Technology Press, 2009.(in Chinese))
    [2]
    王永红, 梁 恒, 王 硕, 等. 数字散斑相关方法及应用进展[J]. 中国光学, 2013, 6(4): 470-480. (WANG Yong-hong, LIANG Heng, WANG Shuo, et al. Advance in digital speckle correlation method and its applications[J]. Chinese Optics, 2013, 6(4): 470-480. (in Chinese))
    [3]
    李元海, 林志斌, 靖洪文, 等. 含动态裂隙岩体的高精度数字散斑相关量测方法[J]. 岩土工程学报, 2012, 34(6): 1060-1068. (LI Yuan-hai, LIN Zhi-bin, JING Hong-wen, et al. High-accuracy digital speckle correlation method for rock with dynamic fractures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1060-1068. (in Chinese))
    [4]
    芮嘉白, 金观昌, 徐秉业. 一种新的数字散斑相关方法及其应用[J]. 力学学报, 1994, 26(5): 599-607. (RUI Jia-bai, JIN Guan-chang, XU Bin-ye. A new digital speckle correlation method and its application[J]. Acta Mechanica Sinica, 1994, 26(5): 599-607. (in Chinese))
    [5]
    孙一翎, 李善祥, 李景镇. 数字散斑相关测量方法的研究与改进[J]. 光子学报, 2001, 30(1): 54-57. (SUN Yi-ling, LI Shan-qiang, LI Jing-zhen. Investigation and modification of the digital speckle correlation method[J]. Acta Photonica Sinica, 2001, 30(1): 54-57. (in Chinese))
    [6]
    简龙晖, 马少鹏, 张 军, 等. 基于小波多级分解的数字散斑相关搜索方法[J]. 清华大学学报 (自然科学版), 2003, 43(5): 680-882. (JIAN Long-hui, MA Shao-peng, ZHANG Jun, et al. Wavelet-transform-based hierarchical search algorithm for the digital speckle correlation method[J]. Journal of Tsinghua University (Science & Technology), 2003, 43(5): 680-882. (in Chinese))
    [7]
    王宜庚. 极值搜索法在数字相关性计算中的应用[J]. 解放军理工大学学报(自然科学版), 2004, 5(2): 100-102. (WANG Yi-geng. Application of minimum searching method to calculation of digital speckles correlation[J]. Journal of PLA University of Science and Technology, 2004, 5(2): 100-102. (in Chinese))
    [8]
    王 昊, 马志峰. 预测搜索算法在图像相关中的应用[J]. 光学技术, 2013, 39(3): 251-255. (WANG Hao, MA Zhi-feng. An improvement of digital speckle correlation method using the predictive search algorithm[J]. Optical Technique, 2013, 39(3): 251-255. (in Chinese))
    [9]
    刘 铭. 数字散斑图像相关技术的改进遗传算法[D]. 天津: 天津大学, 2005. (LIU Ming. Improved genetic algorithm of digital speckle images[D]. Tianjin: Tianjin University, 2005. (in Chinese))
    [10]
    LIU X Y, TAN Q C H. Subpixel in-plane displacement measurement using digital image correlation and artificial neural networks[C]// 2010 Symposium on Photonics and Optoelectronics. Chengdu, 2010: 1-4.
    [11]
    杜亚志, 王学滨. 基于粒子群算法的整像素数字图像相关方法[J]. 计算机工程与应用, 2012, 48(6): 200-204. (DU Ya-zhi, WANG Xue-bin. Digital image correlation method based on particle swarm optimization algorithm without subpixel interpolation[J]. Computer Engineering and Applications, 2012, 48(6): 200-204. (in Chinese))
    [12]
    梁 恒. 基于数字散斑相关方法的测量技术研究[D]. 合肥: 合肥工业大学, 2014. (LIANG Heng. Research on measurement techniques based on digital speckle correlation method[D]. Hefei: Hefei University of Technology, 2014. (in Chinese))
    [13]
    李元海, 靖洪文, 朱合华, 等. 数字照相量测在地基离心试验中的应用[J]. 岩土工程学报, 2006, 28(3): 306-311. (LI Yuan-hai, JING Hong-wen, ZHU He-hua, et al. Experimental investigation on the progressive deformation patterns of sand foundation in centrifuge test using digital photogrammetry[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 306-311. (in Chinese))
  • Related Articles

    [1]LI Yuan-hai, TANG Xiao-jie. Fast analysis method for DSCM based on spatiotemporally non-uniform deformation characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1610-1618. DOI: 10.11779/CJGE201809006
    [2]WANG Xue-bin, DU Ya-zhi, PAN Yi-shan. Measurements of local and global volumetric strains for wet sand specimens under uniaxial compression using digital image correlation method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1648-1656. DOI: 10.11779/CJGE201409011
    [3]WANG Xue-bin, DU Ya-zhi, PAN Yi-shan. Experimental studies on strain distribution and gradients for sand specimens under uniaxial compression based on digital image correlation coarse-fine search method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2050-2057.
    [4]LI Yuan-hai, LIN Zhi-bin, JING Hong-wen, YANG Sheng-qi. High-accuracy digital speckle correlation method for rock with dynamic fractures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1060-1068.
    [5]Application of digital photogrammetric techniques in 3D model tests on large caverns[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3).
    [6]LI Yuanhai, JING Hongwen, ZHU Hehua, MA Xianfeng. Experimental investigation on progressive deformation patterns of sand foundation in centrifuge test using digital photogrammetry[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 306-311.
    [7]SHAO Longtan, WANG Zhupin, LIU Yonglu. Digital image processing technique for measurement of the local deformation of soil specimen in triaxial test[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 159-163.
    [8]PAN Yishan, YANG Xiaobin, MA Shaopeng. Study on deformation localization of rock by white light digital speckle correlation method[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 98-100.
    [9]Mo Haihong, Tang Chaohong, Liu Shaoyue. Determination of the most dangerous slip surface with pattern search method[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 696-699.
    [10]Wang Huaizhong, Sun Jun. Local Error Estimator of Energy and Adaptive Time-Stepping Procedure for Direct Integration Method[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 32-41.

Catalog

    Article views (483) PDF downloads (34628) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return